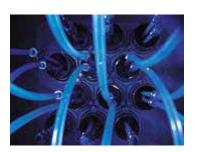
浄水処理技術シンポジウム



- 茨城発、官民共同研究成果発表会 -

発表テーマ

オゾン/過酸化水素による促進酸化処理特性と 浄水セラミック膜処理による水処理障害対策の検討

茨城県企業局 メタウォーター株式会社 〇村田直樹,加藤康弘,奥田健介,本山信行

- 1. 研究背景/目標
- 2. 研究課題
- 3. 適用処理技術の概要
- 4. 研究成果概要
- 5. 実験方法
- 6. 実験結果
 - ①藻類による凝集障害対策技術
 - ②溶解性有機物,かび臭物質の除去
 - ③高品位浄水システムの構築
- 7. まとめ

1.研究背景/目標

METAWATER 2/20

背

H19.12 オシラトリア大量発生起因する凝集阻害、ろ過障害より、 霞ヶ浦を水源とする霞ヶ浦、阿見、関城、新治浄水場の浄水確保に 困難をきたした。

景

現有施設の活用だけでは困難なため、鉄系凝集剤適用実験、汚水の下水道放流などを検討したが、有効な方策が確立されていない状況となっている。

目的

藻類リッチ(個体数10~16万個/mL)かつ粘性の高い霞ヶ浦に 最も適した水処理手法を確立する。

民間事業者が持つ最先端の水処理技術,その組合せによる適用の可能性を調査・検討

共同研究公募(2009年5月)

研究テーマ

標

『安全な水を安定的に供給する浄水処理技術の構築』

- ①藻類による凝集障害対策の確立
- ②溶解性有機物,かび臭物質の効率的な除去

2.研究課題

METAWATER

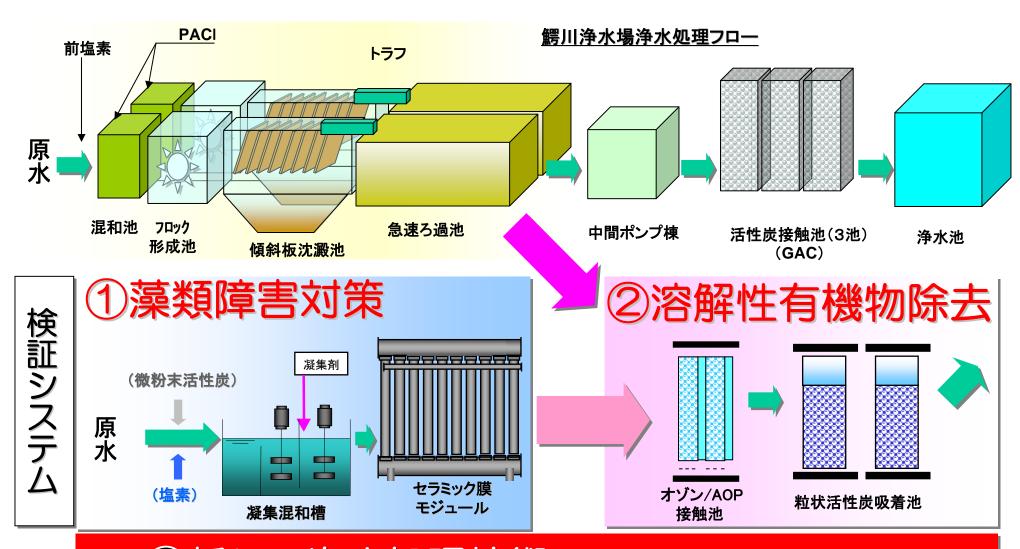
3/20

安全な水を安定的に供給するために本研究で掲げる課題は、以下に示す浄水処理技術の確立です。

研 究 課 題

解決策

①藻類による凝集障害対策の確立 藻類による凝集阻害等の浄水機能障害


浄水セラミック 膜ろ過技術

②溶解性有機物,かび臭物質の効率的な除去 THM前駆物質,臭気物質(2-MIB,ジェオスミン)等の溶解性有機物の除去 オゾン/AOP 処理技術

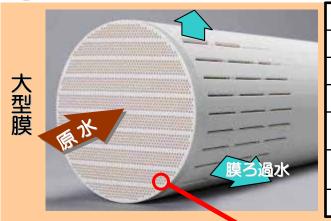
③新しい浄水処理技術の構築

上記二技術を組み合わせた高品位な浄水処理技術

3.適用処理技術の概要

③新しい浄水処理技術(①技術+②技術=高品位浄水フロー)

3.適用処理技術の概要


METAWATER

5/20

3-1.藻類による凝集障害対策技術の確立

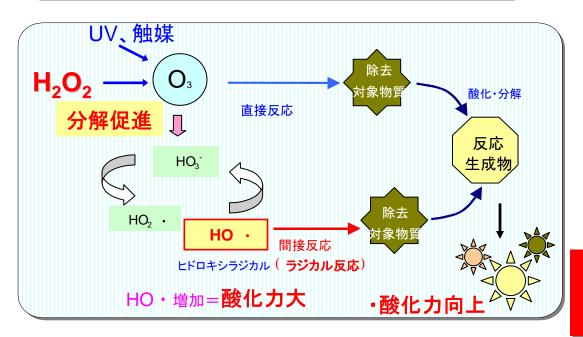
浄水セラミック膜ろ過技術について

①セラミック膜エレメント

形式	内圧式モノリス型			
材 質	セラミック			
公称孔径	0.1 <i>μ</i> m			
名 称	大型膜	小型膜		
形状	φ 180mm × 1500mmL	φ30mm× 1000mmL		
膜ろ過 セル内径	ろ過 ク内径 <mark> </mark>			
膜面積	24m²/本 0.4m²/本			

水の流れ

②膜ろ過システムの特長


- ン安全な水
- >安定した処理能力
- >高回収率
- ン運転管理が容易
- > 低ランニングコスト
- ト省スペース

6/20

3-2.溶解性有機物, かび臭物質の効率的な除去

オゾン/促進酸化(AOP)について

- ▶難分解性物質(臭気物質)除去効率向上
- ▶反応時間の短縮
- ▶オゾン酸化力の補助=オゾン注入率削減
- ▶臭素酸イオンの抑制(過酸化水素併用時)

臭素酸イオン		BrO ₃ 生成	
生成因子		小	大
水	臭化物イオン (Br ⁻)濃度	低	恒
	水温	低	画
	рН	低	刯
質	有機物	**	少
	アンモニア	***	少
	無機炭酸	級	少
操作	オゾン注入率	小	大
	オゾン処理時間	短	長

オゾン酸化(分解)、生成抑制 トレードオフ

7/20

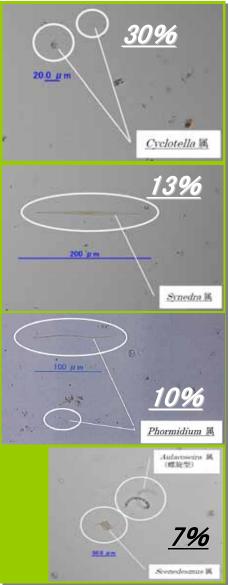
目標	研究課題	実験結果	研究成果
浄水処理技術の構築安全な水を安定的に供給する	①藻類による凝集障害対策 技術の確立 >膜前処理技術の効果的な 組み合わせ >膜閉塞抑制技術の構築	 ☆前塩素凝集膜ろ過 2m³/m²/d,ろ過時間120min <薬品洗浄周期> 夏季9ヶ月,冬季3ヶ月 ☆化学的強化逆洗(CEB) 冬季差圧上昇認められず 	膜ろ過により 藻類漏洩無 冬季藻類増殖時 膜ろ過安定化
	溶解性有機物,かび臭物質の効率的な除去 >促進酸化処理効果の把握 >過酸化水素添加比率の影響	☆オゾン/過酸化水素処理 臭気物質分解効率の向上 臭素酸イオン生成抑制 ⇒両立可能 冬季(低水温期)の有効な 酸化力強化手段	後段活性炭に対し 臭気・THM負荷低減 活性炭再生頻度延伸
	③新しい浄水処理技術の構築>高品位高度浄水フローの構築-セラ膜+オゾン/AOPの長期検証-	☆CEB適用で前塩素不要 <u>THMFP低減</u> 塩素等薬品費削減	安心かつ高品位な浄水処理技術構築

5. 実験方法

5-1. 実験原水

5-2. 実験フロー

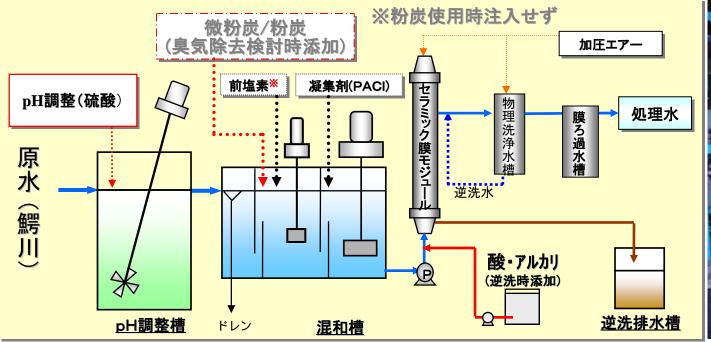
①膜ろ過装置 ②オゾン装置

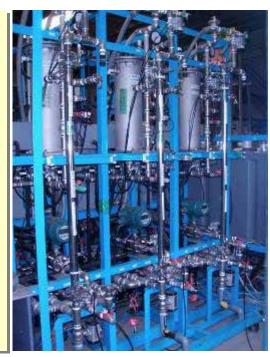

5.実験方法

METAWATER 9/20

5-1. 実験原次 原水水質(鰐川2010年7月-2013年4月)

//////////////////////////////////////					
測定項目		鰐川浄水場原水			
		最小	平均	最大	
рН	-	7.4	8.1	8.8	
濁度	度	5.1	16	24	
色度	度	3	7	12	
鉄	mg/L	0.07	0.36	0.96	
マンガン	mg/L	0.040	0.088	0.280	
アルミニウム	mg/L	0.05	0.32	0.78	
全有機性炭素	mg/L	2.7	3.3	4.3	
E260 (5cmセル)	abs	0.277	0.399	0.527	
臭化物イオン	mg/L	0.17	0.28	0.42	
THM生成能	mg/L	0.070	0.094	0.1310	
2-MIB	ng/L	<1	83	375	
ジェオスミン	ng/L	<1	47	825	
一般細菌	個/mL	68	5700	47000	
植物プランクトン数	個/mL	4040	26030	59730	



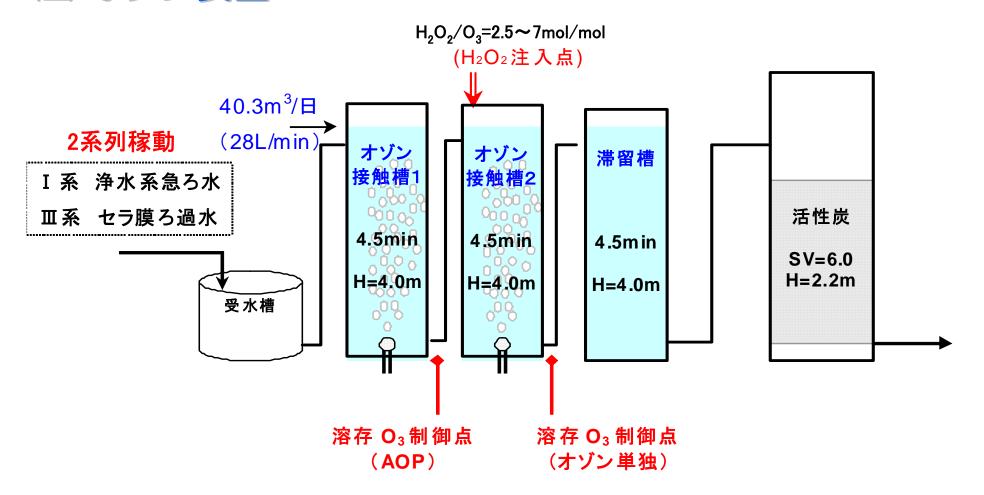


5.実験方法

METAWATER 10/20

5-2.実験フロー (1)膜ろ過装置

前処理	pH 調整値	凝集槽 pH6.5		
	前塩素注入率 [mg/L]	0-5 (変動)		
	使用凝集剤	10%-PACI		
	凝集剤注入率[mg-PACI/L]	60 (一定)		
膜ろ過	流束 [m³/(m²·d)]	2		
	物理洗浄間隔 [min]	120		


化学的強化逆洗条件(CEB)			
酸硫酸			
アルカリ	次亜塩素酸ナトリウム		
浸漬時間	10分		
実施回数	3-7回/週		

CEB = Chemically Enhanced Backwashing

5.実験方法

METAWATER 11/20

5-2.実験フロー (2)オゾン装置

6.実験結果

- 6-1. 藻類による凝集障害対策技術の確立
- 6-2. 溶解性有機物, かび臭物質の効率的な除去
- 6-3. 高品位浄水システムの構築

6-1.藻類による凝集障害対策技術の確立

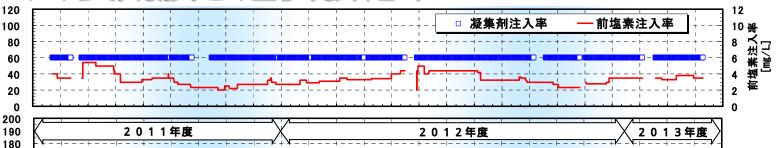
120

100

80 60

40 20

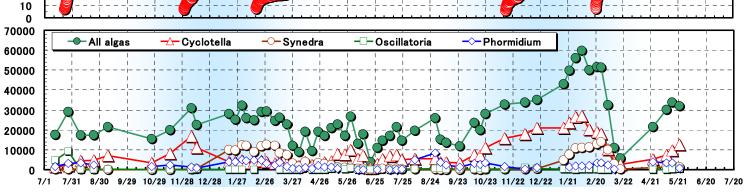
170


160 150

140

薬品洗浄 (CIP) 実施範囲

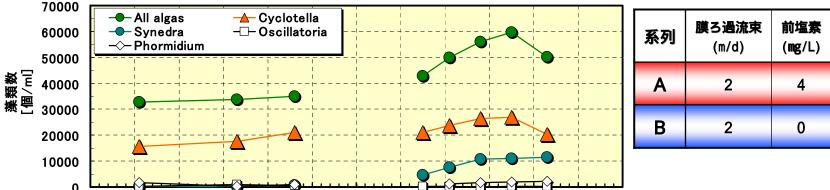
[面/面]


凝集剤沿入網 [mg-asPACI/L]

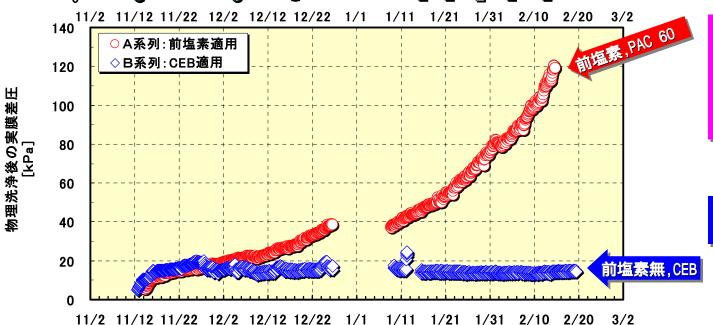
実験条件 Flux 2m³/m²/d 物理洗浄間隔 120分 CEB 無

長期膜ろ過試験結果 前塩素適用 →夏季9ヶ月

♦ =CIP


過性悪化が新たな課題 持込みにて研究継続

6-1.藻類による凝集障害対策技術の確立 (2)CEB適用による膜ろ過性向上


METAWATER

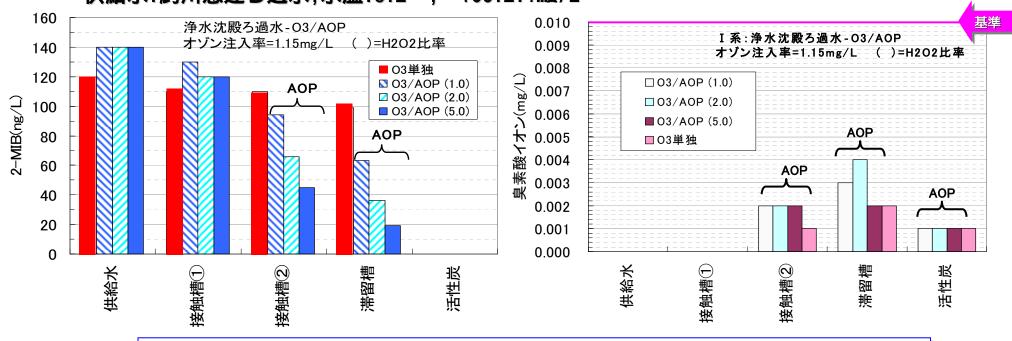
14/20

実験条件

系列	膜ろ過流束 (m/d)	前塩素 (mg/L)	凝集剤 (mg/L)	ろ過 時間	CEB (酸・アルカリ)
Α	2	4	60	120	<u>-</u>
В	2	0	60	120	1回/d 硫酸·次亜

冬季差圧上昇期 CEB適用で安定した 膜ろ過を継続

前塩素注入費削減


6-2.溶解性有機物,かび臭物質の除去

METAWATER

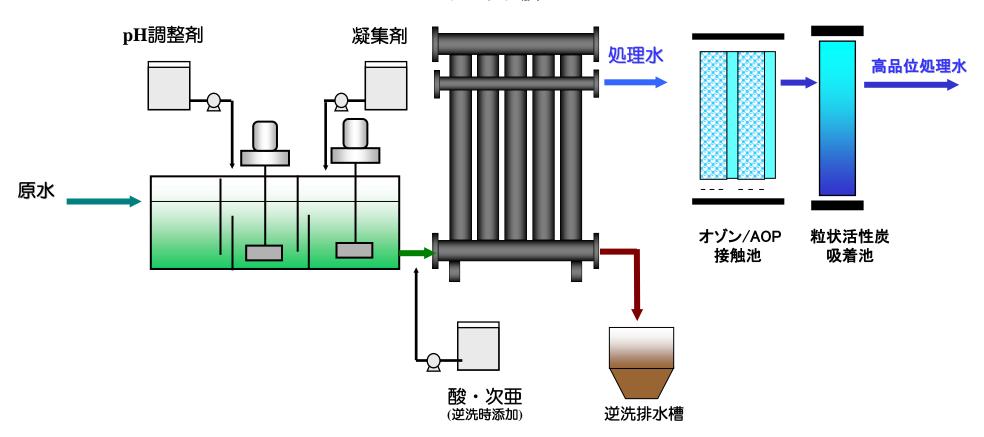
(1)低水温期におけるオゾン処理, 促進酸化処理特性

15/20

供給水: 鰐川急速ろ過水,水温:6.2 , TOC:2.1mg/L

高水温期に比べると過酸化水素水の添加比率の影響大

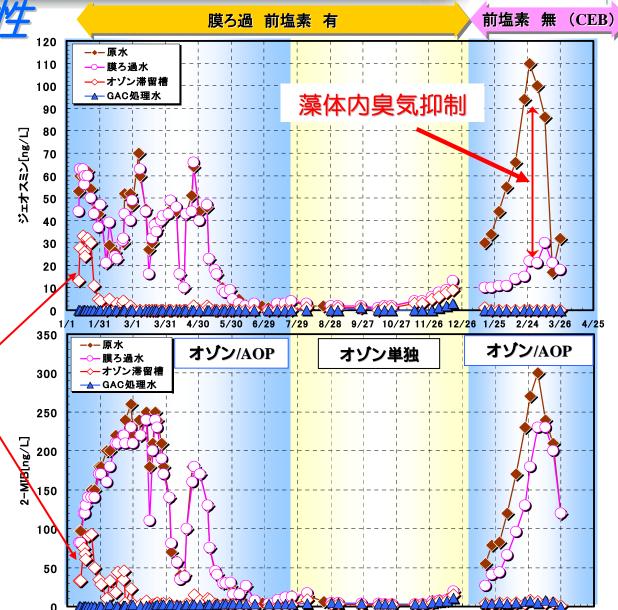
注入比率に応じて臭気物質の分解率最大86% 臭素酸イオン生成低い値で推移



水温や負荷に応じて 添加比率の変更が必要

6-3.高品位浄水システムの構築(1) 高品位浄水フロー

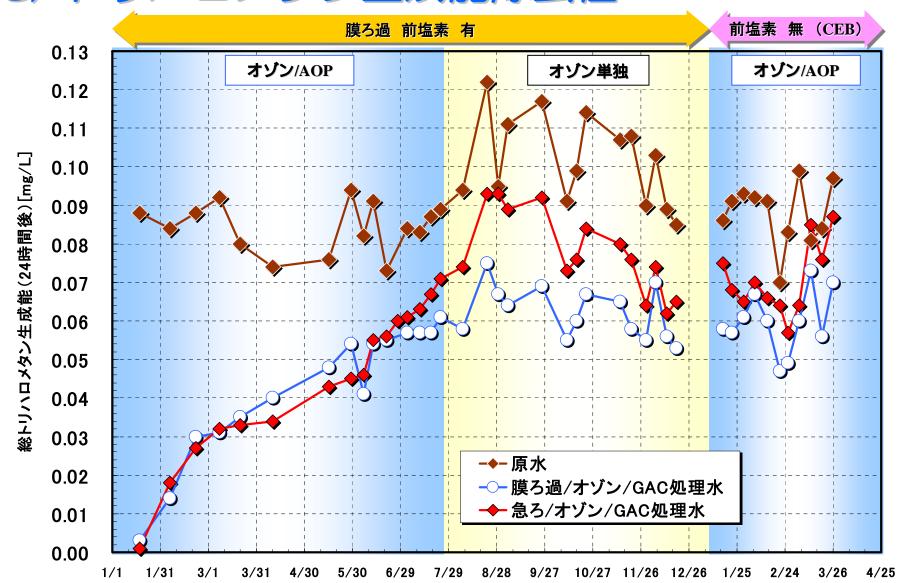
セラミック膜モジュール



6-3.高品位浄水システムの構築

METAWATER

17/20


1/1 1/31 3/1 3/31 4/30 5/30 6/29 7/29 8/28 9/27 10/27 11/26 12/26

条件設定把握期間 低水温、反応pH ↓ オゾン反応性低下

6-3.高品位浄水システムの構築(3)トリハロメタン生成能除去性

18/20

7. まとめ

藻類による凝集障害対策技術の確立

霞ヶ浦原水のような藻類が大量に発生し、水処理障害対策が必要な水源において、浄水セラミック膜処理は有効な対策技術である事を実証した。

溶解性有機物,かび臭物質の効率的な除去

オゾン/過酸化水素による促進酸化処理は、臭気物質分解効率 の向上と臭素酸イオン生成抑制の両立が可能で、低水温期の酸 化力強化手段としても有効であり、活性炭への負荷低減が可能 である事を実証した。

高品位浄水システムの構築

浄水セラ膜と促進酸化処理の組み合わせ可能で、高品位な浄水が可能である事を実証した。

20/20

発表は以上です。 ご清聴ありがとうございました。