実験報告書様式(一般利用課題・成果公開利用)

MLF Experimental Report	提出日 Date of Report
	2015年9月25日
課題番号 Project No.	装置責任者 Name of responsible person
2014BM0008	石垣徹
実験課題名 Title of experiment	装置名 Name of Instrument/(BL No.)
CrSe ₂ の磁気構造解析	iMATERIA (BL20)
実験責任者名 Name of principal investigator	実施日 Date of Experiment
野崎 洋	2014/12/19
所属 Affiliation	
(株)豊田中央研究所	

試料、実験方法、利用の結果得られた主なデータ、考察、結論等を、記述して下さい。(適宜、図表添付のこと) Please report your samples, experimental method and results, discussion and conclusions. Please add figures and tables for better explanation.

1. 試料 Name of sample(s) and chemical formula, or compositions including physical form.	
・セレン化クロム: CrSe2 粉末	

2. 実験方法及び結果(実験がうまくいかなかった場合、その理由を記述してください。)

Experimental method and results.
If you failed to conduct experiment as planned, please describe reasons.

約 0.6g の $CrSe_2$ 粉末をバナジウム製の試料容器に He 雰囲気でインジウムワイヤを使って封入した。中性子回折ビームライン iMATERIA(BL20)において、冷凍機を用いて $4K\sim300K$ の温度範囲で中性子回折パターンを測定した。

2. 実験方法及び結果(つづき) Experimental method and results (continued)

図1に4Kと300Kの中性子回折パターンを示す。図中の矢印で示した位置に新たに回折線が観測された。これは、超格子構造または磁気秩序の形成に伴う回折線と考えられる。文献[1]によると、低温X線回折の結果から、室温では空間群 $P\overline{3}m1$ だが、低温で $R\overline{3}m$ に変化すると報告されている。そこで、 $R\overline{3}m$ で指数付けしたところ、d=3-3.5Åの回折線は核散乱によるピークと確認され、3.5-5.5Åのピークは磁気回折線と考えられた。

指数付けの結果、磁気構造の周期を表すいわゆる伝播ベクトル \vec{k} は、 \vec{k} = (1/2, 1/3, 1/3)、または \vec{k} = (0.38, 0.355, 0.495)の場合に実験データをフィットできた。前者は結晶格子に整合、後者は結晶格子に非整合だが、現時点では差が小さいので判別がつかない。

d=4.3 Å 付近の磁気回折ピーク強度から求めた磁気構造因子 (F_{mag}) の温度依存性を図 2に示す。ここで、 F_{mag} は回折強度 I_{mag} の平方根に比例し、磁気モーメントの大きさに比例する。磁気転移温度 T_c は約 155 K で、温度 (T) が低下するにつれて F_{mag} は増大するが、20 K 以下で減少する。これは 20 K と 30 K の間で磁気構造が変化したことを表し、我々が以前に測定した μ SR 測定結果と矛盾しない。

今後、 \vec{k} ベクトルを決定し、 μ SR など他の測定結果と合わせて磁気構造解析を決定する。

[参考文献]

[1] S. Kobayashi et al., Phys. Rev. B 89, (2014) 054413.

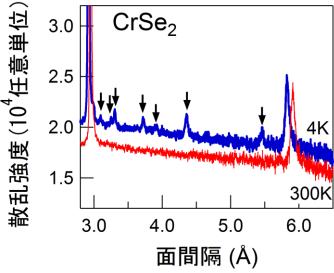


図1 4Kと300Kの中性子回折パターン。→に示す位置に磁気回折ピークが観測された。

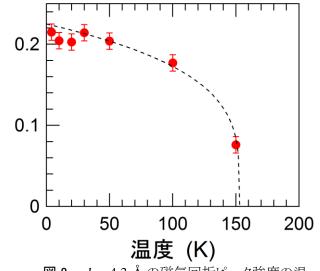


図 2 d = 4.3 Å の磁気回折ピーク強度の温度依存性。破線は $A[(T_c-T)/T_c]^\beta$ で表され、 $A \sim 0.0225$ 、 $\beta \sim 1/4$ である。

借 断