第5章 産業連関表の見方・使い方
第5章 産業連関表の見方・使い方

1 産業連関表の見方

すべての産業は、その生産物を他の産業の中間需要として、又は家計や政府などの最終需要として販売し、また一方では、生産のために必要な原材料を他の産業から購入している。このように、各産業間及び産業と家計や政府などの間には、絶えず財貨やサービスの取引が行われている。

産業連関表とは、一定の期間（通常1年間）に一定の地域内で行われた生産活動によって生じた、産業間及び産業と最終需要（家計消費、一般政府消費等）間の財貨・サービスの取引を一つの表にまとめたものである。この表の中核をなす部分が産業間の取引のつながりを表していることから、産業連関表と呼ばれる。

(1) 内生部門と外生部門

産業連関表の構造を簡単に図示したものが図5-1である。

産業連関表では、生産活動を営む産業部門とそれ以外の非産業部門とに分けている。図5-1で示すように、産業と産業のクロスする部門を内生部門と呼び、最終需要及び粗付加価値を外生部門と呼んでいる。また、内生部門をタテ方向にみて中間投入、ヨコ方向にみて中間需要と呼び、産業間取引の実態を明らかにしている。この中間取引部分である内生部門の数をもってその表のサイズ（行×列）を表す。

次に、産業連関表の読み方についてみると、二つの側面からこれを読むことができる。

一つは、表をヨコ方向の「行」にそって読むことにより、
表側の「売手」側にある各産業で生産したそれぞれの生産物がどの部門へどれだけ売られたかという販路構成がわかる。

しかし、県内の各産業の生産物の販売のみでは、県内の需要を満たすことができないため、不足分を県外から輸入することになる。したがって、表の行方向の数字には、県内産品のみでなく輸入品も含まれる。

もう一つは、同じ表をタテ方向の「列」にそって読むことにより、表頭の「買手」側にある産業が、生産物をつくるために、原材料等をどの部門からどれだけ仕入れたか、また、生産活動により生み出された粗付加価値（雇用者所得や営業余剰など）はどれだけという費用構成を知ることができる。

このように、表をヨコ方向にみていくと販路構成がわかるし、タテ方向にみていくと費用構成がわかるというのが、産業連関表の重要な特色である。ところで、費用構成としては、ある産業がその生産物をつくるために、原材料や労働などの生産要素を投入（Input）した構成であり、また、販路構成では、そのようにして生産（Output）された生産物の配分構成にほかならない。産業連関表が、別名「投入産出表」、あるいは両者の頭文字をとって「I-O表」の名で呼ばれるのはそのためであり、その呼び名は、生産活動に即したものといえる。
（３）需給バランス

さらに、産業連関表では、各産業部門についてタテ方向の賃手（需要部門）の計とヨコ方向の売手（供給部門）の計にそれぞれ生産額を積、投入と流出を一致させていく点にもう一つの特色があり、この需給バランスから導き出される均衡産出モデルの応用が、産業連関分析の基本である。

（４）平成17年茨城県産業連関表

ここで、産業連関表を具体的な計数によりみるとことにする。

表5－1は、今回作成した表を3部門に統合したものである。すなわち、内生部門は、第1次産業、第2次産業、第3次産業の3部門からなっており、外生部門の最終需要も簡略化して、消費、投資、輸出入の3部門にまとめて示している。そして、内生部門の中間需要と最終需要の合計から輸出入を差し引くことにより、県内での生産額が得られる。

また、独自生産部門は、内生システムの中でいわば再生産されない労働その他の用を提供する部門で、生産によって新たに付け加えられる付加価値の形成に寄与し、その価値分配にあずかる部門である。表では、独自生産部門の計のみを記しているが、ここに雇用者所得、営業手数等が含まれている。

例えば、第1次産業をタテ方向にみると、平成17年1年間に、自部門から501億円、第2次産業から1103億円、第3次産業から751億円の原材料等を購入しており、これら原材料等の購入総額は「中間投入計」欄に示すように2355億円である。これらの中間投入によって第1次産業が4816億円の生産を求めたことになる。この生産額から中間投入額を差し引いたものが積加価値であり、生産活動の結果2461億円の積加価値を生み出したことになる。

次に、第1次産業をヨコ方向にみると、平成17年1年間に、第1次産業は新たに生産した財貨・サービス4816億円のうち、中間需要として、自部門に501億円、第2次産業に3065億円、第3次産業に254億円が販売されている。また、最終需要として782億円が消費として、36億円が投資として県内に販売され、県外または国外に2686億円販売されている。さらに、県内の需要を満たせなかった分として2499億円が県外または国外から輸入されている。

このように、表の投入と産出の合計が一致しており、需要・供給がバランスしていることがわかる。

表5－1 平成17年茨城県産業連関表（3部門）

<table>
<thead>
<tr>
<th></th>
<th>中間需要</th>
<th>最終需要</th>
<th>県内生産額</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>第1次産業</td>
<td>第2次産業</td>
<td>第3次産業</td>
</tr>
<tr>
<td>中間投入</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>第1次産業</td>
<td>501</td>
<td>3,065</td>
<td>254</td>
</tr>
<tr>
<td>第2次産業</td>
<td>1,103</td>
<td>63,702</td>
<td>11,583</td>
</tr>
<tr>
<td>第3次産業</td>
<td>751</td>
<td>25,023</td>
<td>26,115</td>
</tr>
<tr>
<td>中間投入計</td>
<td>2,356</td>
<td>91,790</td>
<td>37,932</td>
</tr>
<tr>
<td>独自生産値</td>
<td>2,461</td>
<td>45,232</td>
<td>72,123</td>
</tr>
</tbody>
</table>

（単位：億円）

（注）1. 四捨五入の関係で内訳は必ずしも合計と一致しない。
2. 事務用品は第2次産業。分類不明は第3次産業に算入した。
2 産業連関表の使い方

産業連関表は、これをそのままの姿で読み取ることによって、経済の取引関係の実態を明らかにすることができますが、表作成の主たる目的は、表から導き出される投入係数や逆行列を用いて、産業連関分析を行うことにある。

ここでは、投入係数や逆行列の説明と最終需要と生産や実付加価値などの関係について述べることにする。

（1）投入係数

まず、簡単なモデルを使って説明することにする。
表5－2は、説明の簡略化のため輸入を省略した2部門の産業連関表である。

<table>
<thead>
<tr>
<th>表5－2 産業連関表（仮想例1）</th>
</tr>
</thead>
<tbody>
<tr>
<td>産業1</td>
</tr>
<tr>
<td>産業1</td>
</tr>
<tr>
<td>産業2</td>
</tr>
<tr>
<td>県内生産額</td>
</tr>
<tr>
<td>県内生産額</td>
</tr>
</tbody>
</table>

この表において、X₁、V₁、F₁は、それぞれ第1部門の生産額、県内付加価値、最終需要を意味する。また、X₁₀は、第1部門から第2部門へ投入した県中間投入額である。第1部門が第1部門へ販売した中間需要額である。なお、「i=1, 2, i=1, 2, である。

第1部門が第1部門から購入した中間投入額を第1部門の生産額で除したものを投入係数といい、a₁₁で表す。

これを、表5－2について計算すると、

\[
a_{11} = \frac{X_{11}}{X_1}, a_{12} = \frac{X_{12}}{X_1}
\]

となり、表5－3が得られる。

<table>
<thead>
<tr>
<th>表5－3 投入係数表</th>
</tr>
</thead>
<tbody>
<tr>
<td>産業1</td>
</tr>
<tr>
<td>産業1</td>
</tr>
<tr>
<td>産業2</td>
</tr>
</tbody>
</table>

1式から明らかのように、投入係数というのは、ある産業で生産物1単位を生産するために必要な各産業からの原材料投入量」を意味しており、生産物1単位に対する総原材料の割合を示している。

なお、産業連関分析は、各産業部門が生産活動を行うために投入する原材料等の割合（生産技術構造）は、短期的には変わらない（投入係数の安定性）という仮定をおいている。

また、各産業が原材料として投入した部門（内生部門）の合計を計中間投入率といい、県内付加価値を生産額で除した値を付加付加価値率という。付加付加価値率というのは、「ある産業の生産物1単位に含まれている付加付加価値の割合」を意味している。中間投入率と付加付加価値率を合計すると1になる。

ここで、表5－2を具体的な数値によりみるとなる。
表5－4は、表5－1の産業連関表の各産業の投入額を生産額で除して得られた投入係数表である。

<table>
<thead>
<tr>
<th>表5－4 投入係数表（付加付加価値を含む）</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1次産業</td>
</tr>
<tr>
<td>産業1</td>
</tr>
<tr>
<td>産業2</td>
</tr>
<tr>
<td>産業3</td>
</tr>
<tr>
<td>産業4</td>
</tr>
<tr>
<td>県内付加価値</td>
</tr>
<tr>
<td>県内生産額</td>
</tr>
</tbody>
</table>

この表をみると、例えば、第1次産業では、1単位の生産をあげるために、自部門から0.104104、第2次産業から0.229039、第3次産業から0.155910をそれぞれ原材料として中間投入し、その合計は0.489053となっている。そして、その結果0.510947の県内付加価値を生み出したこととしている。

そこで、表5－2をヨコ方向にみると、次の産出バランス式が導かれる。

産業1：X₁₁ + X₁₂ + F₁ = X₁
産業2：X₁₂ + X₁₂ + F₂ = X₁
産業3：X₁₂ + X₁₂ + F₃ = X₁
産業4：X₁₂ + X₁₂ + F₄ = X₁

この2式は、「中間需要額+最終需要額=生産額」ということを表しており、需要を満たすために生産が行われたということを意味している。これを、総合均衡方程式という。

ここで、1式を次のように形を変形する。

X₁₁ = a₁₁X₁, X₁₄ = a₁₂X₁
X₁₁ = a₁₃X₁, X₁₄ = a₁₄X₁

この3式を用いて2式を表すと、次のようになる。

a₁₁X₁ + a₁₂X₁ + F₁ = X₁
a₁₃X₁ + a₁₄X₁ + F₄ = X₁

つまり、各産業の中間需要投入係数と生産額を用いて表すことができたことになる。この4式は、もし投入係数が事前に定まっているとすると、未知数が4つ（F₁, F₂, X₁, X₂）の連立方程式である。したがって、最終需要F₄が決まれば、残る未知数は生産額X₁, X₂の2つだけであり、この連立方程式を解くことができる。

つまり、最終需要が決まれば、最終需要を満たすべき産業1と産業2の必要生産額を求めることができる。これが、均衡産出高モデルの考え方である。
次に、今まで述べてきたことを、①～⑤の仮説例で計算してみる。

表5-5 産業関連表（仮説例2）

<table>
<thead>
<tr>
<th></th>
<th>農林水産業</th>
<th>製造業</th>
<th>最終需要</th>
<th>県内生産額</th>
</tr>
</thead>
<tbody>
<tr>
<td>農林水産業</td>
<td>10</td>
<td>50</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>製造業</td>
<td>20</td>
<td>100</td>
<td>80</td>
<td>200</td>
</tr>
<tr>
<td>粗取加価値</td>
<td>70</td>
<td>50</td>
<td>80</td>
<td>200</td>
</tr>
<tr>
<td>県内生産額</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>

①式における結果を、次のようになる。

\[F_1 = 80, \quad F_2 = 120 \]

\[0.1X_1 + 0.25X_2 + 80 = X_1 \]

\[0.2X_1 + 0.5X_2 + 120 = X_2 \]

次に、求める生産額 \(X_1 \)、\(X_2 \)は，この連立方程式を解くことにによって得られる。

①式を移行して整理すると，

\[0.9X_1 - 0.25X_2 = 80 \]

\[0.2X_1 - 0.5X_2 = -120 \]

\[\times 2 \\ 1.8X_1 - 0.5X_2 = 160 \]

\[\minus \(\div 3 \) \]\[\times 1.5X_2 = 280 \]

\[\div X_2 = 175 \]

\[\div 0.9X_1 - 0.25X_2 = 80 \]

\[\div X_2 = 310 \]

したがって，求める解は，次のようになる。

\[X_1 (農林水産業の生産額) = 175 (億円) \]

\[X_2 (製造業の生産額) = 310 (億円) \]

これは，最終需要が農林水産業，製造業ともに40億円ずれ増加したときに，生産水準が，農林水産業が100億円から175億円へ，製造業が200億円から310億円へそれぞれ引き上げられ，最終的な生産増加額は，農林水産業が75億円，製造業が110億円であることである。

つまり，最終需要の増加は，各業界がその増加分のみを生産すればよいのではなく，生産過程で原材料に対する需要が発生し，新たな需要増が各業界の生産を更に誘発し，その結果加減材料に対する需要が増大する，という金額的には徐々に小さくなりながらも，無限に続く生産の絶対価格として上記のような生産額が求めることである。

次に，投入係数を用いて，最終需要の増加が中間需要を次に誘発していくという生産の次次連続過程を考えてみることにする。

⑥式において，まず最終需要 \(F_1, F_2 \)が与えられると，各業界は，その最終需要を満たすだけの生産を行うことができない。しかし，この生産を行うためには，投入係数にしたがって原材料等を投入しなければならない（第1次の中間需要の発生）。また，各業界がこの第1次の中間需要を満たすための生産を行うには，さらに投入係数にしたがって原材料等を投入しなければならない（第2次の中間需要の発生）。以下このような関係が次々に繰り返されていく。この過程は無限に続くことになる。

—84—
このような生産の波及過程を表5－6の投入係数を用いて、農林水産業と製造業の最終需要がそれぞれ80億円、120億円あった場合を前提として計算した結果が表5－7である。この計算方法は、繰り返し計算法と呼ばれる。

表5－7 生産波及の逐次繰り返し累積過程

<table>
<thead>
<tr>
<th>項目</th>
<th>農林水産業部門</th>
<th>製造業部門</th>
<th>誘発中間需要</th>
</tr>
</thead>
<tbody>
<tr>
<td>直接効果</td>
<td>農林水産業部門に最終需要が80発生する。</td>
<td>製造業部門に最終需要が120発生する。</td>
<td></td>
</tr>
<tr>
<td>1次波及</td>
<td>農林水産業は最終需要80を生産するため 農林水産業から80×0.1=8 製造業から80×0.2=16</td>
<td>製造業は最終需要120を生産するため 農林水産業から120×0.25=30 製造業から120×0.5=60</td>
<td>農林水産業</td>
</tr>
<tr>
<td></td>
<td>を中間投入する</td>
<td>を中間投入する</td>
<td>8+30=38</td>
</tr>
<tr>
<td>2次波及</td>
<td>農林水産業は中間需要38を生産するため 農林水産業から38×0.1=3.8 製造業から38×0.2=7.6</td>
<td>製造業は中間需要76を生産するため 農林水産業から76×0.25=19 製造業から76×0.5=38</td>
<td>農林水産業</td>
</tr>
<tr>
<td></td>
<td>を中間投入する</td>
<td>を中間投入する</td>
<td>3.8+19=22.8</td>
</tr>
<tr>
<td>3次波及</td>
<td>農林水産業は中間需要22.8を生産するため 農林水産業から22.8×0.1=2.28 製造業から22.8×0.2=4.56</td>
<td>製造業は中間需要45.6を生産するため 農林水産業から45.6×0.25=11.4 製造業から45.6×0.5=22.8</td>
<td>農林水産業</td>
</tr>
<tr>
<td></td>
<td>を中間投入する</td>
<td>を中間投入する</td>
<td>2.28+11.4=13.68</td>
</tr>
<tr>
<td>4次波及</td>
<td>農林水産業は中間需要13.68を生産するため 農林水産業から13.68×0.1=1.368 製造業から13.68×0.2=2.736</td>
<td>製造業は最終需要27.36を生産するため 農林水産業から27.36×0.25=6.84 製造業から27.36×0.5=13.68</td>
<td>農林水産業</td>
</tr>
<tr>
<td></td>
<td>を中間投入する</td>
<td>を中間投入する</td>
<td>1.368+6.84=8.208</td>
</tr>
<tr>
<td>5次波及</td>
<td>農林水産業は中間需要8.208を生産するため 農林水産業から8.208×0.1=0.8208 製造業から8.208×0.2=1.6416</td>
<td>製造業は最終需要16.416を生産するため 農林水産業から16.416×0.25=4.104 製造業から16.416×0.5=8.208</td>
<td>農林水産業</td>
</tr>
<tr>
<td></td>
<td>を中間</td>
<td>を中間</td>
<td>0.8208+4.104=4.9248</td>
</tr>
<tr>
<td></td>
<td>投入する</td>
<td>投入する</td>
<td></td>
</tr>
<tr>
<td></td>
<td>以下同じ計算を繰り返す。</td>
<td>以下同じ計算を繰り返す。</td>
<td>(無限に0に近づく。)</td>
</tr>
</tbody>
</table>

直接効果（最終需要）| 間接効果（中間需要）| 合計
| 农林水産業 | 80 | 38 | 22.8 | 13.68 | 8.208 | 4.9248 | 175 |
| 製造業 | 120 | 76 | 45.6 | 27.36 | 16.416 | 9.8496 | 310 |

---85---
（2）逆行列係数

表5－2の産業連関表のモデルは、簡略化のため、輸移入を含まない単純モデルを例示したが、現実の経済活動は、輸移出を通じて外部経済と強く結びついている。そこで、実際の産業連関表は、表5－8のモデルのように輸移入が計上されている。このことでは、中間需要を生産額と輸入係数を用いて表している。)

最終需要及び最終需要によって誘発される中間需要は、そのすべてを県内の生産活動によって賄われているわけではなく、その一部は県外からの輸移入に依存しており、その分岐及び効果の県外流出が生じているのである。したがって、輸移入を組み込んだ産業連関表では必ずしも、正しい経済分析を行うことはできないといえる。このことでは、輸移入の取扱いとそれに対応した逆行列係数の型について述べることにする。

表5－8 産業連関表（仮設例3）

<table>
<thead>
<tr>
<th>産業1</th>
<th>産業2</th>
<th>最終需要</th>
<th>輸移入</th>
<th>県内生産額</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_{11}</td>
<td>a_{12}</td>
<td>F_{1}</td>
<td>ΔM_{1}</td>
<td>X_{1}</td>
</tr>
<tr>
<td>a_{21}</td>
<td>a_{22}</td>
<td>F_{2}</td>
<td>ΔM_{2}</td>
<td>X_{2}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>相対値</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X_{1}</td>
<td>X_{2}</td>
</tr>
</tbody>
</table>

ア. （I－A）－1（F－M）型

表5－8を行列表示すると、

\[\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} + \begin{bmatrix} F_{1} \\ F_{2} \end{bmatrix} - \begin{bmatrix} M_{1} \\ M_{2} \end{bmatrix} = \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} \quad \cdots (1) \]

となる。ここで、投入係数の行列をA、最終需要の列ベクトルをF、輸移入の列ベクトルをM、生産額の列ベクトルをXとして、①式を出力バランス式で表すこと、次のようになる。

\[AX + F - M = X \quad \cdots (2) \]

\[\begin{bmatrix} 輸入額\ \begin{array}{c} 部門別 \\\ 県内間関係\end{array} \end{bmatrix} + \begin{bmatrix} 部門別\ \begin{array}{c} 部門別 \\\ 県内間関係\end{array} \end{bmatrix} = \begin{bmatrix} 輸入額\ \begin{array}{c} 部門別 \\\ 県内間関係\end{array} \end{bmatrix} \]

この②式は、中間需要と最終需要を加えた需要合計が、県内生産額のみでは賄えず、需要合計から生産額を差し引いた不足分を県外からの輸移入によって賄っているという経済関係を表している。

②式を変形すると、

\[(I-A)X=F-M \quad (ただし、Iは単位行列) \]

となります。この式に (I－A)の逆行列 \((I-A)^{-1}\) を左から乗せると、各部門の県内での生産水準

\[X=(I-A)^{-1}(F-M) \quad \cdots (3) \]

が求められる。

この③式は、最終需要（F）と輸移入額（M）がともに外生的に与えられた場合、県内自給分の最終需要（F－M）を満たすために必要な県内生産額（X）が求められることを意味している。

ここで、(I－A)^{-1} = (I + A + A^2 + A^3 + \cdots) であり、(3)式は、最終需要により誘発される中間需要はすべて県内の生産活動で賄えるとみなしているので、求めた生産額は実際よりも過大に出てくる。

また、輸移入は本来、県内の生産活動に大きく依存している。内生的には決定されるべき性格をもっているが、このモデルでは生産額（X）が求められないので、最終需要とともに輸移入も先方に与えなければならないという不合理な面がある。

イ. (I－A+M)^{-1}F型

このモデル式は、(I－A)^{-1}(F－M)型の欠点である輸移入を内生的に取り扱っている。

すなわち、輸移入は県内各産業の生産水準に比例して決定すられるという仮定に基づいて、輸移入係数 (M) を次のとおり定義する。

\[m = \frac{M}{X} \]

つまり、

\[m = \frac{M}{X} \]

を \(M \) とすると、輸移入額の列ベクトル \(M \) は、\[M=\hat{M} \]

\[AX+FM=M \]

となり、この式を \(X \) について整理すると、

\[X=(I-A+M)^{-1}F \quad \cdots (4) \]

が求められる。

ここで、(I－A+M)^{-1} = (I－(I－A)^{-1})(I + A + A^2 + A^3 + \cdots) であり、このモデル式においては、最終需要を与えであればそれをより誘発される中間需要は県内産業の生産活動によるものに限定される。

しかし、このモデルには次の2つの欠点がある。

第1に、輸移入額を当該部門の生産額で除して輸移入係数を求めており、輸移入額消費比率をすべての消費部門において一定であるという前提に立っており、必ずしも現実の経済の実態と一致していない点である。また、輸移入額が生産額に比例するという前提にも問題があるだろう。現実の経済の活動では、生産水準が上がれば、むしろその品目の県内自給率が上がり、生産水準が下がれば、輸移入が上がるものと思われるからである。

第2に、このモデル式においては、最終需要（F）には、県内産業のみでなく輸移入分も含まれており、輸移出についても一定割合で輸移入品が含まれるという点である。つ
しまい、産業連関表では、輸出品出、県内生産物の県外出荷額が計上され、財の単なる通過取引は計上されないので、輸出品出の中に一定割合で輸入品出が含まれているという仮定は誤っている。

ウ、$[I - \{ I - M \} A]^{-1} [(I - M) F d + E]$ 型

このモデルは、最終需要を県内最終需要と輸出出に分けて取り扱うことには、さらに、輸入出を生産額に対する輸入出額の割合から、需要合計から輸出出を除いた県内需要に対する割合に改めることにより、輸入出の中でも輸入出が含まれるという（$I - A + M$）→ F 型モデルの欠点を取り除いたものである。

2つの型の相違点は、次のとおりである。

<table>
<thead>
<tr>
<th>型</th>
<th>最終需要の取扱い</th>
<th>輸入出</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I - (I - M) A^{-1}$ 型</td>
<td>最終需要 1 本で取り扱う（輸入出で輸入出が出される）</td>
<td>輸入出額</td>
</tr>
<tr>
<td>$I - (I - M) A^{-1}$ 型</td>
<td>県内最終需要（消費・投資）と輸入出に出分けて取り扱う</td>
<td>県内需要額</td>
</tr>
</tbody>
</table>

\[A = (I - A + M)^{-1} \]
\[M = \text{県内生産額} \]
\[(\text{県内生産額} \times \text{比例}) \]

という。この式の分子は第 1 製品の輸入出額、分母は第 1 製品に対する県内需要である。したがって、式を対角化した行列を M とすると、輸入出は、

\[M = (I - A + M)^{-1} \]

と表すことができる。

表 5－9 産業連関表（仮説例）

<table>
<thead>
<tr>
<th>産業</th>
<th>県内需要の</th>
<th>前期出荷出</th>
<th>県内最終需要</th>
<th>輸入出</th>
<th>県内生産額</th>
</tr>
</thead>
<tbody>
<tr>
<td>産業 1</td>
<td>$a_1 X_1$</td>
<td>$a_2 X_2$</td>
<td>E_1</td>
<td>ΔM_1</td>
<td>X_3</td>
</tr>
<tr>
<td>産業 2</td>
<td>$a_3 X_4$</td>
<td>$a_5 X_5$</td>
<td>E_2</td>
<td>ΔM_2</td>
<td>X_6</td>
</tr>
</tbody>
</table>

この表を産出バランス式で表すと、

\[AX + F d + E - M = X \]

となり、この式に ① 式を代入すると、

\[AX + F d + E - M = X \]

となり、この式を X について整理すると、県内での生産水準を示す

\[X = [(I - (I - M) A^{-1} [(I - M) F d + E]] \]

が得られる。

なお、この①式においても、中間需要と県内最終需要の各産業部門で、輸入出の消費割合は一定であるという仮定に基づいている。ここで、(I - M) は、県内需要に対する輸入出消費割合を除いた県内自給率である。県内自給率 (I - M) は、輸入出消費率が一定と仮定した場合の各産業部門での県内生産品の割合である。

これは、このモデルが競争輸入出方式（消費される財貨が県内産品であるか輸入出であるかを区別できる）を仮定する方式の産業連関表に基づいて組み立てられている以上、やむを得ないことである。県内最終需要を県内最終需要と輸出出に出分けて取り扱うという点で、$I - A + M$→ F 型と比べると、より実態に即したものになっている。

ところでは、このような波及効果の輸入出による県外への流出率については、(I - A)→ F 型行列系の列和と [I - (I - M) A^{-1}]→ F 型行列系の列和の差を求めることにより明らかにできる。表 5－10 によりこれを見ると、例えば、第 1 次産業に 1 個円の輸入出が生じた場合の波及効果は 2 倍 509 万円であり、1 個 3256 万円が県内自給分である、県内売上高の 7252 万円が県外流出分である。また、(I - A)→ F 型の列和に対する [I - (I - M) A^{-1}]→ F 型の列和の差を求めたものが県内売上高であり、(100－県内売上高率)が県外流出率である。

県内売上高率を産業別にみると、第 3 次産業 (77.2%) が最も高く、次いで第 1 次産業 (68.6%)、第 2 次産業 (56.0%) の順になっている。

ここで、注意を要するのは、県内売上高率は、波及効果の大きさを示すものではないという点であり、波及効果の大きさは、隣接行列系の列和でみるとべきである。

表 5－10 生産波及効果の県外流出率と県外流出率

(注) (A) は表 5－11、(B) は表 5－12 より求めた。

<table>
<thead>
<tr>
<th>様式</th>
<th>列和</th>
<th>順次</th>
<th>列和</th>
<th>列和</th>
<th>列和</th>
<th>列和</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 次産業</td>
<td>2 1821</td>
<td>1 875</td>
<td>0 737</td>
<td>0 648</td>
<td>0 383</td>
<td>0 253</td>
</tr>
<tr>
<td>2 次産業</td>
<td>2 3281</td>
<td>1 456</td>
<td>0 237</td>
<td>0 130</td>
<td>0 076</td>
<td>0 050</td>
</tr>
<tr>
<td>3 次産業</td>
<td>1 681</td>
<td>1 293</td>
<td>0 347</td>
<td>0 203</td>
<td>0 128</td>
<td>0 085</td>
</tr>
</tbody>
</table>
（3）影響力係数と感応度係数

表5-11と表5-12は、表5-1の産業連関表（3部門）より作成した（1-A）^{-1}-I型と（1-(I-M)A）^{-1}-I型の逆行列係数表である。この2つを比べると、（1-A）^{-1}-型は、輸入を内生的に取扱っていないので、最終需要によって誘発される中間需要は、すべて県内産業で賄われるという形になっており、輸入を内生的に取扱っている（1-(I-M)A）^{-1}-型よりも彼及効果が過大になり、各産業部門の列和はすべて（1-(I-M)A）^{-1}-型よりも大きくなっている。

表5-11 逆行列係数表（1-A）^{-1}-型

<table>
<thead>
<tr>
<th>第1次産業</th>
<th>第2次産業</th>
<th>第3次産業</th>
<th>行和</th>
<th>感応度係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1次産業</td>
<td>1.131016</td>
<td>0.063947</td>
<td>0.010432</td>
<td>1.192295</td>
</tr>
<tr>
<td>第2次産業</td>
<td>0.655660</td>
<td>1.985108</td>
<td>0.073270</td>
<td>2.817090</td>
</tr>
<tr>
<td>第3次産業</td>
<td>0.341332</td>
<td>0.489979</td>
<td>1.379141</td>
<td>2.223987</td>
</tr>
<tr>
<td>列和</td>
<td>2.095838</td>
<td>2.522907</td>
<td>1.684866</td>
<td>6.323728</td>
</tr>
<tr>
<td>影響力係数</td>
<td>0.988225</td>
<td>1.213194</td>
<td>0.890581</td>
<td>-</td>
</tr>
</tbody>
</table>

表5-12 逆行列係数表（1-(I-M)A）^{-1}-型

<table>
<thead>
<tr>
<th>第1次産業</th>
<th>第2次産業</th>
<th>第3次産業</th>
<th>行和</th>
<th>感応度係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1次産業</td>
<td>1.081983</td>
<td>0.013198</td>
<td>0.019441</td>
<td>1.067054</td>
</tr>
<tr>
<td>第2次産業</td>
<td>0.103010</td>
<td>1.198134</td>
<td>0.051653</td>
<td>1.349459</td>
</tr>
<tr>
<td>第3次産業</td>
<td>0.176066</td>
<td>0.203875</td>
<td>1.206880</td>
<td>1.607621</td>
</tr>
<tr>
<td>行和</td>
<td>1.325768</td>
<td>1.413907</td>
<td>1.264459</td>
<td>4.004134</td>
</tr>
<tr>
<td>影響力係数</td>
<td>0.988363</td>
<td>1.064079</td>
<td>0.967367</td>
<td>-</td>
</tr>
</tbody>
</table>

そこで、より現実の経済活動を反映している（1-(I-M)A）^{-1}-型逆行列係数により、波及効果の実態をみてみることにする。表5-12において、例えば、第1次産業に1億円の輸入出荷が発生すると、第1次産業は直接分の1億円のほかに、間接的な波及効果により519万円分の生産をしなければならず、同様に、第2次産業には1030万円、第3次産業には1709万円の生産誘発額が生じ、産業全体では、1億3258万円の生産増が生じる。

このように、逆行列係数の列和は、その列部門の産業に1単位の最終需要が生じた場合に、産業全体に誘発される生産量を示している。したがって、部門別列和を全体部門の列和の平均で除すことにより、どの列部門に対する単位当たりの最終需要が産業全体に与える影響の度合いを知ることができる。これが影響力係数であり、次の式で表される。

影響力係数 = 逆行列係数の各部門列和 / 逆行列係数の列和の平均

例えば、第1次産業の影響力係数は、次のように求められる。

第1次産業の影響力係数 =

\[
1.325768 \over (1.325768 + 1.413907 + 1.264459) + 3
\]

= 0.988363

この係数が1より大きい部門は、影響力が産業平均より大きいことになる。

また、逆行列係数をヨコ方向にみると、ある部門の行和は、各部門の最終需要が1単位ずつ生じたとき、その部門部門が直接、間接的に供給すべき生産量を示している。したがって、部門別列和を全体部門の行和の平均で除することにより、各部門に1単位ずつ最終需要が生じた場合に、どの部門部門がどれくらい影響を受けるか、その受けける影響の度合を知ることができる。これが感応度係数であり、次の式で表される。

感応度係数 = 逆行列係数の各部門の行和 / 逆行列係数の行和の平均

例えば、第1次産業の感応度係数は、次のように求められる。

第1次産業の感応度係数 =

\[
1.067054 \over (1.067054 + 1.349459 + 1.607621) + 3
\]

= 0.795491

この係数が1より大きい部門は、感応度が産業平均より大きいことになる。

一般に、影響力係数は、各部門からの直接、間接の原料状態入力率が高くなる、かつ、原材料となる部門の輸入出荷が低い部門で大きく、感応度係数は、需要部門が多岐にわたり、中間需要率が高く、かつ、輸入率が低い部門で大きくなる。
（4）最終需要による生産誘発

ア．生産誘発額

各産業部門は、生産に必要な原材料としての需要である中間需要や消費、投資、輸出等の最終需要を満たすために生産を行うが、究極的にはすべて最終需要を満たすために生産活動を行っていると考えられる。

このことは、逆に、すべての生産は究極的には最終需要によって誘発されるということであり、このようにして誘発された生産額を最終需要による生産誘発額と呼んでいる。

これにより、各産業部門の生産がどの最終需要によって支えられているかがわかり、最終需要の変動に対する影響の測定ができる。最終需要項目別生産誘発額は、あらかじめ求められた逆行列係数に、項目別最終需要額を乗じることによって求められる。また、このようにして求めた最終需要項目別生産誘発額を各部門別に行計合計（ヨコ方向）すると、それぞれの部門の生産額に等しくなる。

図5-2 最終需要項目別生産誘発額を求める方法

<table>
<thead>
<tr>
<th>生産誘発額</th>
<th>(表5-13)</th>
<th>消費（1-M）F</th>
<th>投資（1-M）F</th>
<th>輸出(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>消費</td>
<td>投資</td>
<td>逆行列係数</td>
<td>(対角線自給率)</td>
<td>消費ペクトル</td>
</tr>
<tr>
<td>消費 (Fc)</td>
<td>投資 (Fi)</td>
<td>(1-1-M) A</td>
<td>(1-M) Fc</td>
<td>投資ペクトル</td>
</tr>
</tbody>
</table>

B 0.651893 0.013218 0.001944 0.651893 0.013218 0.001944 0.366 8.689 71.418

（4）最終需要項目別生産誘発額を求め方

生産誘発額は、図5-2のように、県内最終需要（消費・投資）によるもの及び輸出によるものの2つに分けて求め、輸出を別に算出するのでは、輸出はすでに県内産品であり、輸入品を含まないという産業関連表の前提によるものである。

(7) 表5-1により県内自給率を求め（表5-13）、それを消費及び投資に乗じて県内産品に対する最終需要を求め

表5-13 輸入率と県内自給率

<table>
<thead>
<tr>
<th></th>
<th>輸入率</th>
<th>県内自給率</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1次産業</td>
<td>0.537523</td>
<td>0.462477</td>
</tr>
<tr>
<td>第2次産業</td>
<td>0.664209</td>
<td>0.335791</td>
</tr>
<tr>
<td>第3次産業</td>
<td>0.235018</td>
<td>0.764982</td>
</tr>
<tr>
<td>合計</td>
<td>0.431521</td>
<td>0.568479</td>
</tr>
</tbody>
</table>

(注) 1．輸入率＝輸入額/県内需要額
2．県内需要額＝中間需要額+県内最終需要額
3．県内自給率＝1－輸入率

表5-14 県内生産品に対する最終需要

<table>
<thead>
<tr>
<th></th>
<th>消費 (1-M) Fc</th>
<th>投資 (1-M) Fi</th>
<th>輸出 (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1次産業</td>
<td>0.462477× 792</td>
<td>0.462477× 36</td>
<td>2.666</td>
</tr>
<tr>
<td>第2次産業</td>
<td>0.335791× 12,112</td>
<td>0.335791× 28,139</td>
<td>100.339</td>
</tr>
<tr>
<td>第3次産業</td>
<td>0.235018× 74,848</td>
<td>0.235018× 5,102</td>
<td>9.291</td>
</tr>
<tr>
<td>合計</td>
<td>51,882</td>
<td>10,832</td>
<td>112,205</td>
</tr>
</tbody>
</table>

(4) 各最終需要項目別に生産誘発額を計算する。

B=[(1-(1-M)A)]とし、
① 消費による生産誘発額

表5-15 最終需要項目別生産誘発額

(単位:万円)

<table>
<thead>
<tr>
<th></th>
<th>消費</th>
<th>投資</th>
<th>輸出</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1次産業</td>
<td>553</td>
<td>114</td>
<td>4,148</td>
<td>4,816</td>
</tr>
<tr>
<td>第2次産業</td>
<td>8,094</td>
<td>8,283</td>
<td>120,636</td>
<td>137,013</td>
</tr>
<tr>
<td>第3次産業</td>
<td>71,418</td>
<td>6,199</td>
<td>32,438</td>
<td>110,055</td>
</tr>
<tr>
<td>合計</td>
<td>80,065</td>
<td>14,597</td>
<td>157,222</td>
<td>251,884</td>
</tr>
</tbody>
</table>

（注）四捨五入の関係で内訳は必ずしも合計と一致しない。
この表をみると、県内生産品に対する消費額 6 兆 1892 億円に、1.23 倍の 8 兆 65 億円の生産が誘発され、同様に県内生産品に対する投資額 1 兆 682 億円に、1.37 倍の 1 兆 4597 億円、輸出額 11 兆 2205 億円に、1.40 倍の 15 兆 7222 億円の生産がそれぞれ誘発される。そして、その合計は、県内生産額の 25 億 1884 億円と一致する。

また、第 1 次産業を例にとると、消費で 553 億円、投資で 114 億円、輸出で 4148 億円の生産がそれぞれ誘発され、その合計は、第 1 次産業の県内生産額 4816 億円と一致する。

なお、ここで注意を要する点は、例えば、第 1 次産業の輸出による生産誘発額といった場合、第 1 次産業の輸出のみによる誘発額ということではなく、すべての産業の輸出による第 1 次産業の生産誘発額を意味する点である。

ウ. 生産誘発係数

最終需要項目別生産誘発額（表 5－15）をそれぞれに対応する最終需要の合計額（表 5－1 の最終需要の列計）で除することにより求められる。項目別最終需要 1 単位が各産業の生産をどれだけ誘発するかを示している。

＜計算方法＞

生産誘発係数 = 最終需要項目別生産誘発額 / 最終需要項目別合計（列計）

＜この式により、次のように求める。＞

<table>
<thead>
<tr>
<th></th>
<th>消費</th>
<th>投資</th>
<th>輸出</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>第 1 次産業</td>
<td>553 7</td>
<td>114 7</td>
<td>4,148 7</td>
<td>4,816 7</td>
</tr>
<tr>
<td></td>
<td>0.00628</td>
<td>0.00428</td>
<td>0.05697</td>
<td>0.02128</td>
</tr>
<tr>
<td>第 2 次産業</td>
<td>8,094 7</td>
<td>8,283 7</td>
<td>120,536 7</td>
<td>137,013 7</td>
</tr>
<tr>
<td></td>
<td>0.00816</td>
<td>0.00904</td>
<td>0.09612</td>
<td>0.09730</td>
</tr>
<tr>
<td>第 3 次産業</td>
<td>71,418 7</td>
<td>6,159 7</td>
<td>32,438 7</td>
<td>110,065 7</td>
</tr>
<tr>
<td></td>
<td>0.08065</td>
<td>0.01597</td>
<td>0.04735</td>
<td>0.04999</td>
</tr>
<tr>
<td>合計</td>
<td>89,065 7</td>
<td>14,597 7</td>
<td>157,222 7</td>
<td>251,884 7</td>
</tr>
<tr>
<td></td>
<td>0.03178</td>
<td>0.00181</td>
<td>0.05747</td>
<td>0.05956</td>
</tr>
</tbody>
</table>

＜この式により、次のように求める。＞

生産誘発係数 = 最終需要項目別生産誘発額 / 最終需要項目別合計

＜計算結果をまとめめる。＞

<table>
<thead>
<tr>
<th></th>
<th>消費</th>
<th>投資</th>
<th>輸出</th>
<th>平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>第 1 次産業</td>
<td>0.00628</td>
<td>0.00428</td>
<td>0.05697</td>
<td>0.02128</td>
</tr>
<tr>
<td>第 2 次産業</td>
<td>0.00816</td>
<td>0.00904</td>
<td>0.09612</td>
<td>0.09730</td>
</tr>
<tr>
<td>第 3 次産業</td>
<td>0.08065</td>
<td>0.01597</td>
<td>0.04735</td>
<td>0.04999</td>
</tr>
<tr>
<td>合計</td>
<td>0.03178</td>
<td>0.00181</td>
<td>0.05747</td>
<td>0.05956</td>
</tr>
</tbody>
</table>

この表をみると、本県の生産額のうち 62.4%が輸出により誘発されており、輸出依存型という。また、産業別にみると、第 1 次産業、第 2 次産業はそれぞれ輸出に 88.1%、88.0%依存しており、輸出依存型といえ、第 3 次産業は生産に 64.9%依存しており、消費依存型といえる。
（5）最終需要による粗付加価値誘発

ア．総合粗付加価値係数

生産値に対する粗付加価値額の割合を粗付加価値率（粗付加価値係数）といい、生産物1単位当たりの粗付加価値比を示している。

前述したとおり、生産は最終需要によって誘発されるから、その関係を通じて、最終需要はまた粗付加価値を誘発する源泉といえる。そこで、ある産業に1単位の最終需要が生じたときに、直接、間接に誘発されるすべての産業の粗付加価値を示すのが総合粗付加価値係数である。

総合粗付加価値係数は、児童最終需要（消費・投資）によるものと輸出によるものがある。これは、輸出品は除産業を含むものである。これは、輸入品は動物除産業を含まないという産業連関表の前提によるものである。

粗付加価値係数（\(\hat{V}_B \)）に[1 - (1 - M)]・逆行列係數（B）を乗じたもの列和が輸出による総合粗付加価値係数であり、この係数にさらに県内自給率行列（I - M）を乗じたものの列和が県内最終需要による総合粗付加価値係数である。

<輸出による総合粗付加価値係数の求め方>

(7) 粗付加価値係数（\(\hat{V}_B \)）×逆行列係數（B）を求める。

\[
\hat{V}_B = \begin{bmatrix}
0.510947 & 0.000000 & 0.000000 \\
0.000000 & 0.330066 & 0.000000 \\
0.000000 & 0.000000 & 0.655334
\end{bmatrix}
\times
\begin{bmatrix}
1.051893 & 0.013218 & 0.001944 \\
0.103010 & 1.194814 & 0.051835 \\
0.170866 & 0.205875 & 1.230880
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.537461 & 0.006754 & 0.000993 \\
0.034000 & 0.394367 & 0.017043 \\
0.111974 & 0.134917 & 0.806637
\end{bmatrix}
\]

(6) \(\hat{V}_B \) の列和を求める。

\[
\hat{i}(\hat{V}_B) = \begin{bmatrix}
1 & 1 & 1
\end{bmatrix}
\times
\begin{bmatrix}
0.537461 & 0.006754 & 0.000993 \\
0.034000 & 0.394367 & 0.017043 \\
0.111974 & 0.134917 & 0.806637
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.683435 & 0.536038 & 0.824673
\end{bmatrix}
\]

(6) 計算結果をまとめめる。

表5-19 县内最後需要に係る粗付加価値成逆行列係數及び総合粗付加価値係數

\[
\begin{bmatrix}
0.537461 & 0.006754 & 0.000993 \\
0.034000 & 0.394367 & 0.017043 \\
0.111974 & 0.134917 & 0.806637
\end{bmatrix}
\times
\begin{bmatrix}
0.248563 & 0.002266 & 0.000760 \\
0.015724 & 0.132425 & 0.013038 \\
0.051785 & 0.045304 & 0.617063
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.316073 & 0.179997 & 0.630860
\end{bmatrix}
\]

(7) 計算結果をまとめめる。

表5-18 輸出に係る粗付加価値成逆行列係數及び総合粗付加価値係數

\[
\begin{bmatrix}
0.537461 & 0.006754 & 0.000993 \\
0.034000 & 0.394367 & 0.017043 \\
0.111974 & 0.134917 & 0.806637
\end{bmatrix}
\times
\begin{bmatrix}
0.248563 & 0.002266 & 0.000760 \\
0.015724 & 0.132425 & 0.013038 \\
0.051785 & 0.045304 & 0.617063
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.316073 & 0.179997 & 0.630860
\end{bmatrix}
\]

イ．粗付加価値誘発額

粗付加価値誘発額は、粗付加価値係數に生産誘発額を乗じる方式（図5-3）と粗付加価値係數に逆行列係數を乗じ、さらに項目別最終需要を乗じる方式（図5-4）の2通りの求め方がある。いずれも結果は同じになる。

また、これを各産業別に合計したもの、各産業の粗付加価値額に等しくなる。
図5-3 生産額から粗加成価値額を求める方式

粗加成価値額

消費による額 ×

投資による額 ×

輸出による額 ×

図5-4 最終需要から粗加成価値額を求める方式

最終需要額

消費による額 ×

投資による額 ×

輸出による額 ×

(7) 消費による粗加成価値額を求めめる。

V_B (1-M)Fe = 0.537481 x 0.00754 x 0.000988 × 0.001197 = 5.757 × 0.03002 = 0.175

(8) 投資による粗加成価値額を求めめる。

V_B (1-M)Fi = 0.00900 x 0.383977 × 0.00174 = 0.00900 x 0.00174 = 0.00000

(9) 輸出による粗加成価値額を求めめる。

V_B (1-M)Ex = 0.00940 x 0.234937 × 0.00174 = 0.00940 x 0.00174 = 0.00000

(10) 計算結果をまとめる。

表5-20 最終需要項目別粗加成価値額

<table>
<thead>
<tr>
<th>項目</th>
<th>消費</th>
<th>投資</th>
<th>輸出</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1次産業</td>
<td>282</td>
<td>58</td>
<td>2,120</td>
<td>2,461</td>
</tr>
<tr>
<td>第2次産業</td>
<td>2,672</td>
<td>2,734</td>
<td>39,818</td>
<td>45,223</td>
</tr>
<tr>
<td>第3次産業</td>
<td>46,800</td>
<td>4,063</td>
<td>21,258</td>
<td>72,123</td>
</tr>
<tr>
<td>合計</td>
<td>49,757</td>
<td>6,855</td>
<td>63,195</td>
<td>119,807</td>
</tr>
</tbody>
</table>

(11) 粗加成価値額の計算方法

<計算方法>

粗加成価値

最終需要項目別粗加成価値額

消費額

投資額

輸出額

合計

表5-21 最終需要項目別の粗加成価値額

<table>
<thead>
<tr>
<th>項目</th>
<th>消費</th>
<th>投資</th>
<th>輸出</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1次産業</td>
<td>0.00917</td>
<td>0.00231</td>
<td>0.00890</td>
<td>0.01038</td>
</tr>
<tr>
<td>第2次産業</td>
<td>0.03030</td>
<td>0.10616</td>
<td>0.35665</td>
<td>0.50021</td>
</tr>
<tr>
<td>第3次産業</td>
<td>0.52972</td>
<td>0.16072</td>
<td>0.18945</td>
<td>0.31939</td>
</tr>
<tr>
<td>合計</td>
<td>0.56316</td>
<td>0.27195</td>
<td>0.56326</td>
<td>0.35698</td>
</tr>
</tbody>
</table>

この表をみると、最終需要合計では、1億円の最終需要が生じると、350万円の粗加成価値が誘起されることが示されている。輸出によるのない封鎖経済では、1億円の最終需要が生じると、まず1億円の粗加成価値が誘起され、実際の生産額では粗加成価値が350万円が実現出来があるのである。

また、最終需要項目別にみると、輸出（0.56320）のが最大で、次いで消費（0.56316）、投資（0.27195）の順になっている。

エ．粗加成価値額の計算方法

各最終需要は、消費、投資、輸出による粗加成価値額を最終需要価値額（含む）で除することにより求められる。つまり、各産業ごとの消費、投資、輸出による粗加成価値額の構成比に該当する。この構成比をもとに、各産業の粗加成価値額が最終需要項目に比例するかを誘起されているかがわかる。

<計算方法>

粗加成価値

最終需要項目別粗加成価値額

消費額

投資額

輸出額

合計

表5-22 最終需要項目別粗加成価値額

<table>
<thead>
<tr>
<th>項目</th>
<th>消費</th>
<th>投資</th>
<th>輸出</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1次産業</td>
<td>0.11481</td>
<td>0.02374</td>
<td>0.86415</td>
<td>1.00000</td>
</tr>
<tr>
<td>第2次産業</td>
<td>0.05907</td>
<td>0.00456</td>
<td>0.88046</td>
<td>1.00000</td>
</tr>
<tr>
<td>第3次産業</td>
<td>0.64900</td>
<td>0.05632</td>
<td>0.29472</td>
<td>1.00000</td>
</tr>
<tr>
<td>合計</td>
<td>0.45800</td>
<td>0.08721</td>
<td>0.52747</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

この表をみると、本県の粗加成価値額のうち25%が輸出により誘起されており、輸出依存型といえる。
（6）最終需要による輸入入誘発

ア．総合輸入係数

各産業部門は、需要を満たするために生産を行うが、県内産品だけでは需要をすべて満たえないため、不足分は輸入によって補うことになる。

既に述べたとおり、生産は究極的には最終需要によって誘発されるが、その生産を行うために間接、間接に需要とする輸入額も最終需要により誘発されるといえる。

先にみたとおり、\([1 - (I - M)] A^{-1} (A - B)\) 型モデルでは、

| 輸入額 | \(M - (M + (X + F) d)\) ① |
| 生産額 | \(X = B - [(I - M) F + E]\) ② |

と定義される。ここで、②式を①式に代入すると、

\[
M = MAB (I - M) F + MBE + MF d
\]

となり、輸入額（M）は、県内最終需要（F d）及び輸出（E）のそれぞれに誘発されるものの合計として表される。

したがって、県内最終需要（消費・投資）及び輸出に対応するものとして \([MAB (I - M) + M]\) と \(MAB\) の2種類の係数が求められ、この係数に、県内最終需要及び輸出をそれぞれ乗じることにより輸入入誘発額が求められる。

これらの係数の列和が総合輸入係数であり、最終需要が1単位生じたときの直接、間接のすべての産業の輸入入誘発水準を示している。

(7) 輸入入係数（対角行列）（M）×投入係数（A）を求める。

\[
MA = \begin{bmatrix}
0.537523 & 0 & 0 \\
0 & 0.646209 & 0 \\
0 & 0 & 0.235018
\end{bmatrix}
\]

\[
\times \begin{bmatrix}
0.104104 & 0.223270 & 0.002312 \\
0.229099 & 0.464932 & 0.105063 \\
0.155910 & 0.182631 & 0.237292
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0.055989 & 0.012025 & 0.001243 \\
0.152130 & 0.308812 & 0.069784 \\
0.036642 & 0.042922 & 0.055768
\end{bmatrix}
\]

(4) \(MAB\) × 逆行列係数（B）を求める。

\[
MAB = \begin{bmatrix}
0.104104 & 0.223270 & 0.002312 \\
0.229099 & 0.464932 & 0.105063 \\
0.155910 & 0.182631 & 0.237292
\end{bmatrix} \times \begin{bmatrix}
0.055989 & 0.012025 & 0.001243 \\
0.152130 & 0.308812 & 0.069784 \\
0.036642 & 0.042922 & 0.055768
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0.055989 & 0.012025 & 0.001243 \\
0.152130 & 0.308812 & 0.069784 \\
0.036642 & 0.042922 & 0.055768
\end{bmatrix}
\]

(5) \(MAB\)の列和を求めめる。

\[
i(MAB) = \begin{bmatrix}
1 & 1 & 1
\end{bmatrix}
\]

\[
\times \begin{bmatrix}
0.055989 & 0.012025 & 0.001243 \\
0.152130 & 0.308812 & 0.069784 \\
0.036642 & 0.042922 & 0.055768
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0.060313 & 0.015363 & 0.002259 \\
0.203758 & 0.383531 & 0.102137 \\
0.052493 & 0.063249 & 0.070931
\end{bmatrix}
\]

(6) 計算結果をまとめると。

表5-23 輸出額に係る輸入入誘発係数

<table>
<thead>
<tr>
<th>群</th>
<th>第1次産業</th>
<th>第2次産業</th>
<th>第3次産業</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1次産業</td>
<td>0.055989</td>
<td>0.012025</td>
<td>0.001243</td>
</tr>
<tr>
<td>第2次産業</td>
<td>0.055989</td>
<td>0.012025</td>
<td>0.001243</td>
</tr>
<tr>
<td>第3次産業</td>
<td>0.055989</td>
<td>0.012025</td>
<td>0.001243</td>
</tr>
</tbody>
</table>

総合輸入係数 0.316565 0.463962 0.175327
＜消費及び投資による総合輸入係数の求め方＞

(7) 輸出先の準逆行列係数（M A B）×県内自給率行列（I−M）を求める。

\[
\begin{bmatrix}
0.060331 & 0.015363 & 0.002259 \\
0.203758 & 0.385351 & 0.102137 \\
0.052493 & 0.063249 & 0.070931
\end{bmatrix}
\times
\begin{bmatrix}
0.462477 & 0 & 0 \\
0 & 0.335791 & 0 \\
0 & 0 & 0.764982
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.027893 & 0.005159 & 0.001728 \\
0.094233 & 0.129397 & 0.078133 \\
0.024277 & 0.021238 & 0.054261
\end{bmatrix}
\]

(7) M A B (I−M) + Mを求める。

\[
\begin{bmatrix}
0.027893 & 0.005159 & 0.001728 \\
0.094233 & 0.129397 & 0.078133 \\
0.024277 & 0.021238 & 0.054261
\end{bmatrix}
+
\begin{bmatrix}
0.537523 & 0 & 0 \\
0 & 0.664209 & 0 \\
0 & 0 & 0.235018
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.565417 & 0.005159 & 0.001728 \\
0.094233 & 0.793606 & 0.078133 \\
0.024277 & 0.021238 & 0.589273
\end{bmatrix}
\]

(7) M A B (I−M) + Mの列和を求める。

\[
\begin{bmatrix}
0.565417 & 0.005159 & 0.001728 \\
0.094233 & 0.793606 & 0.078133 \\
0.024277 & 0.021238 & 0.589273
\end{bmatrix}
\times
\begin{bmatrix}
1 & 1 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.593927 & 0.820003 & 0.369140
\end{bmatrix}
\]

(7) 計算結果をまとめる。

表5−24 県内最終需要に関する輸入準逆行列係数及び総合輸入係数

<table>
<thead>
<tr>
<th>県内最終需要</th>
<th>輸入準逆行列係数</th>
<th>総合輸入係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1次産業</td>
<td>0.565417</td>
<td>0.005159</td>
</tr>
<tr>
<td>第2次産業</td>
<td>0.094233</td>
<td>0.793606</td>
</tr>
<tr>
<td>第3次産業</td>
<td>0.024277</td>
<td>0.021238</td>
</tr>
<tr>
<td>総合輸入係数</td>
<td>0.820003</td>
<td>0.369140</td>
</tr>
</tbody>
</table>

表5−23及び表5−24をみると、いずれも第2次産業の輸出及び県内の最終需要が1単位増加したときが最も輸入誘発効果が大きい。
表5-25 最終需要項目別輸入販売額

<table>
<thead>
<tr>
<th></th>
<th>消費</th>
<th>投資</th>
<th>輸出</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1次産業</td>
<td>643</td>
<td>133</td>
<td>1.723</td>
<td>2.499</td>
</tr>
<tr>
<td>第2次産業</td>
<td>16.011</td>
<td>16.35</td>
<td>40.148</td>
<td>72.544</td>
</tr>
<tr>
<td>第3次産業</td>
<td>21.941</td>
<td>1.905</td>
<td>7.139</td>
<td>30.984</td>
</tr>
<tr>
<td>合計</td>
<td>38.595</td>
<td>18.422</td>
<td>49.010</td>
<td>106.027</td>
</tr>
</tbody>
</table>

輸入額と毎日算する

（注）四捨入の関係で間数は必ずしも合計と一致しない。この表をみると、輸出額に対する輸入額が、4兆9010億円でも最大大きい。

また、産業別にみると、第2次産業が、7兆2544億円で最大大きく、その内訳は、輸出額により4兆148億円、消費により1兆6385億円、投資により1兆5011億円がそれぞれ誘発されているのがわかる。

ウェ。輸入額誘発係数

最終需要項目別輸入販売額（表5-25）をそれぞれ対応する最終需要の合計額（表5-1の最終需要の列計）で除すことにより求められ、項目別最終需要1単位が各産業の輸入額をどれだけ誘発するかを示している。

＜計算方法＞

輸入額誘発係数 = 最終需要項目別輸入額誘発額 / 最終需要項目別合計（列計）

表5-26 最終需要項目別輸入額誘発係数

<table>
<thead>
<tr>
<th></th>
<th>消費</th>
<th>投資</th>
<th>輸出</th>
<th>平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1次産業</td>
<td>0.00273</td>
<td>0.00526</td>
<td>0.01536</td>
<td>0.01106</td>
</tr>
<tr>
<td>第2次産業</td>
<td>0.18122</td>
<td>0.0643</td>
<td>0.35783</td>
<td>0.23228</td>
</tr>
<tr>
<td>第3次産業</td>
<td>0.248338</td>
<td>0.075345</td>
<td>0.063923</td>
<td>0.13729</td>
</tr>
<tr>
<td>合計</td>
<td>0.43632</td>
<td>0.22885</td>
<td>0.36792</td>
<td>0.469492</td>
</tr>
</tbody>
</table>

この表をみると、最終需要合計では、1兆円の最終需要が生じると、4695万円の輸入額が誘発されることを示している。

また、最終需要項目別に見ると、投資の輸入販売効果が最も大きく、1兆円の投資があった場合、7288万円の輸入が誘発されることが示されている。

なお、ここで、表5-21と表5-26の関係をみると、（組加価値誘発係数） + （輸入販売係数） = 1 となっており、最終需要合計の列計に1が含まれており、最終需要項目別にみた場合も同じである。（ただし、四捨入の関係で若干の誤差がある。）これは、（最終需要合計） - （輸入額合計） = （組加価値合計）という、最終需要と組加価値のの間にある2面積の傾斜から推定できるわけであり、すなわち、最終需要1単位当たり誘発される組加価値額と輸入額の和は、最終需要と同じ1単位になることを意味している。

エ。輸入額誘発依存度

各最終需要により誘発された産業別輸入販売額を輸入額誘発額（行計）で除することにより求められる。これにより、各産業の輸入額がどのような最終需要項目によりどれくらい誘発されているかがわかる。

＜計算方法＞

輸入額誘発依存度 = 最終需要項目別輸入額誘発額 / 産業別輸入額誘発額合計

表5-27 最終需要項目別輸入額誘発依存度

<table>
<thead>
<tr>
<th></th>
<th>消費</th>
<th>投資</th>
<th>輸出</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1次産業</td>
<td>0.26777</td>
<td>0.05256</td>
<td>0.66957</td>
<td>1.00000</td>
</tr>
<tr>
<td>第2次産業</td>
<td>0.220708</td>
<td>0.22567</td>
<td>0.55345</td>
<td>1.00000</td>
</tr>
<tr>
<td>第3次産業</td>
<td>0.768131</td>
<td>0.061467</td>
<td>0.236402</td>
<td>1.00000</td>
</tr>
<tr>
<td>合計</td>
<td>0.364008</td>
<td>0.173749</td>
<td>0.462243</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

この表をみると、第1次産業と第2次産業の輸入額は、輸出額により最も大きく誘発されており、第3次産業の輸入額は、消費により最も大きく誘発されているのがわかる。
産業連関表と県民経済計算の関係

産業連関表と県民経済計算は、双方とも一定期間における財務・サービスの流れを把握するという点で共通点をもつ、かつ、経済活動の主体を企業、家計、政府などに大別する点でも同じである。

しかし、県民経済計算は、1県の経済全体を1つの単位であるかのように取り扱うマクロの概念であるのに対し、産業連関表は、1県の経済を数多くの部門に分割し、県民経済計算では考慮していない中間生産物の取引を、部門別に詳細にとらえることに重点を置いている。さらに、消費、投資、輸出入出等の最終需要部門や、雇用者所得、営業余剰等の税付加価値部門も、その内容を部門別に分割して扱っている。

このように、両者の間には、基本的な性格の相違があり、この結果、産業連関表は、分析目的である産業間の生産技術的な結合関係を明らかにする必要から、各部門間の取引は、財貨及びサービスに限定され、振替的取引並びに金融的取引は、いっさい表から除外される。また、各産業の生産は、純生産又は付加価値だけでなく、原材料等と使用した中間投入額も含めたグロースの生産額として表される。

つまり、県民経済計算は、生産活動により生じた所得の分配面および支出面の構成形式であるのに対し、産業連関表は、財貨・サービスの中間取引と県民経済計算を同時に含んだ構成形式をとることができる。

ところで、もともと県民経済計算の計数と産業連関表の公式部門（税付加価値及び最終需要）の計数とは、同じ経済の流れをとらえたものであり、本来一致すべきものであるが、両者にはそれぞれ独立の概念設定があり、そのままである形では、完全には一致しない。大まかな対応関係は、図5-7のとおりであるが、主な相違点は次のとおりである。

① 調査・推計の対象となる期間について、県民経済計算は会計年度であるが、産業連関表では営業年である。
② 調査・推計の単位について、県民経済計算は事業所ベースであるが、産業連関表では生産活動ベース（アクティビティベース）であること。（商品ベースに近い。）
③ 調査・推計の対象となる地域について、県民経済計算は属地主義（生産面）と属人主義（分配面、支出面）であるが、産業連関表では属地主義である。
④ 家計外消費支出の取扱いについて、県民経済計算は中間取引の一部として内生部門に計上しているが、産業連関表では最終需要及び租付加価値の一部として外生部門に計上している。

また、産業連関表と県民経済計算では以下のとおり部門名称が異なっている。

<table>
<thead>
<tr>
<th>産業連関表</th>
<th>県民経済計算</th>
</tr>
</thead>
<tbody>
<tr>
<td>（租付加価値）</td>
<td>（県内総支出）</td>
</tr>
<tr>
<td>家計外消費支出</td>
<td>軽省最終消費支出</td>
</tr>
<tr>
<td>雇用者所得</td>
<td>一般政府最終消費支出</td>
</tr>
<tr>
<td>営業余剰</td>
<td>県内総固定資産形成</td>
</tr>
<tr>
<td>資本消費引当</td>
<td>営業余剰・混合所得</td>
</tr>
<tr>
<td>営業余剰</td>
<td>固定資本消耗</td>
</tr>
<tr>
<td>関税</td>
<td>生産・輸入品に課される税</td>
</tr>
<tr>
<td>（控除）補助金</td>
<td>（税）補助金</td>
</tr>
</tbody>
</table>

（注）()内が県民経済計算における対応部分。
4 「行列」の意味と計算方法

（1）行列の定義と用語

次のよう�数を長方形に並べたものを、行列（マトリックス）という。行列を表すには、長方形に並べた数の両側に（）を付ける。この行列を形成している一つ一つの数を、この行列の要素という。

行列の長方形に並んでいる数のヨコの並びを行、タテの並びを列という。それぞれ1から順に第1行、第2行、左から順に第1列、第2列という。

\[
\begin{bmatrix}
4 & 2 & 8 & 6 \\
1 & 5 & 3 & 4 \\
2 & 9 & 0 & 5 \\
\vdots & \vdots & \vdots & \vdots \\
\end{bmatrix}
\]

第 第 第 第

列 列 列 列

上の例は要素がすべて定数の行列であるが、行列の要素は定数とは限らず、変数であってもよい。

ある行列の行及び列の数がそれぞれm及びnであるとき、この行列を（m×n）型行列あるいは（m, n）型行列という。したがって、上の示した行列は（3×4）型である。

行列を1個の文字で表すことがある。その場合は、普通アルファベットの大文字を用い、その要素は、次のように表す。

例えば、行列Aの第1行、第j列の位置にある要素は、Aの小文字aを用いて、

\[a_{i,j}\]

と表す。そして、これを行列Aの（i, j）要素という。

したがって、この行列Aが（m×n）型ならば、

\[
A =
\begin{bmatrix}
a_{11} & a_{12} & a_{13} & \ldots & a_{1n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\end{bmatrix}
\]

となる。また、行列Aを（a_{i,j}）と表すこともある。

（2）特殊な形の行列

行列はその形によっていくつかの名称が付けられているが、次に特に重要な正方行列及びベクトルについて説明する。

ア. 正方行列

行及列の数が等しい行列、すなわち要素が正方形に並んでいる行列を、正方行列という。

正方行列には、その形から、次のような特殊な名称で呼ばれているものがある。

イ. ベクトル

ただ1行あるいは1列になる行列を、それぞれベクトル、列ベクトルという。また、すべての要素が1のベクトルを、特に単位ベクトル、単位列ベクトルという。

（3）行列の演算

アイ. 加減算

行列の加減算は、行及び列の数が等しい行列表とによってのみ行われる。

行列Aに別の行列Bを加えると、この2つの行列の（i, j）要素の和、すなわち（a_{i,j} + b_{i,j}）を新たに（i, j）要素とする行列を作ることをいい、これをA+Bと表す。

同様に、行列Aから行列Bを引くと、この2つの行列の（i, j）要素の差、すなわち（a_{i,j} - b_{i,j}）を新たに（i, j）要素とする行列を作ることをいい、これをA−Bと表す。

例えば、A及びBを

\[
A = \begin{bmatrix} 3 & 9 \\ 5 & 4 \end{bmatrix}
\]

\[
B = \begin{bmatrix} 2 & 5 \\ 7 & 0 \end{bmatrix}
\]

とすると、A+B及びA−Bは次のようになる。
\[
A + B = \begin{bmatrix}
3 + 2 & 9 + 5 \\
5 + 1 & 4 + 8 \\
7 + 4 & 0 + 6
\end{bmatrix} = \begin{bmatrix}
5 & 14 \\
6 & 12 \\
11 & 6
\end{bmatrix}
\]
\[
A - B = \begin{bmatrix}
3 - 2 & 9 - 5 \\
5 - 1 & 4 - 8 \\
7 - 4 & 0 - 6
\end{bmatrix} = \begin{bmatrix}
1 & 4 \\
4 & \triangle 4 \\
3 & \triangle 6
\end{bmatrix}
\]

イ. 乗算

行列の掛け算は、掛ければなる方（左側）の行列の列数と、掛ける方（右側）の行列の行数が等しいことが必要である。ここで、ある行列Aの列数の行数Bを掛けることとし、Aを（l, m）型行列、Bを（m, n）型行列とする。

さて、行列Aに行列Bを掛けるとは、次の数値

\[
\sum_{j=1}^{m} a_{ij} b_{j}
\]

をその（i, j）要素とする行列を作ることをいい、これをAをBと表す。ABは（l, n）型行列になる。

例えば、A及びBを

\[
A = \begin{bmatrix}
4 & 8 \\
2 & 1 \\
3 & 6
\end{bmatrix}, \quad B = \begin{bmatrix}
2 & 5 \\
0 & 1
\end{bmatrix}
\]

すると、行列Aの列数（= 2）と行列Bの行数（= 2）は等しいので、掛け算可能であり、

\[
AB = \begin{bmatrix}
4 \times 2 + 8 \times 0 & 4 \times 5 + 8 \times 1 \\
2 \times 2 + 1 \times 0 & 2 \times 5 + 1 \times 1 \\
3 \times 2 + 6 \times 0 & 3 \times 5 + 6 \times 1
\end{bmatrix}
\]

\[
= \begin{bmatrix}
8 & 28 \\
4 & 11 \\
6 & 21
\end{bmatrix}
\]

と（3, 2）型の行列になる。

A及びBがともに同じ型の正方形行列であるとき、ABもBAも型の等しい正方形行列となるが、結果は必ずしも等しくない。

例えば、A及びBを

\[
A = \begin{bmatrix}
4 & 8 \\
2 & 1 \\
3 & 6
\end{bmatrix}, \quad B = \begin{bmatrix}
2 & 5 \\
0 & 1
\end{bmatrix}
\]

すると、AB及びBAはそれぞれ次のようになる。

\[
A B = \begin{bmatrix}
8 & 28 \\
4 & 11 \\
6 & 21
\end{bmatrix}, \quad B A = \begin{bmatrix}
18 & 21 \\
2 & 1
\end{bmatrix}
\]

行列の掛け算、通常の数の掛け算と最も異なる点は、この演算の法則が成り立たない点である。したがって、掛け算を行う場合には、掛ける順序に注意する必要がある。

一方、Aを任意の正方形行列、Iを単位行列とするとき、次のようにつり立つ。

\[A I = A \quad I A = A\]

もちろん、この単位行列Iは、掛け算を行えるように、数の及び列数を定めておく必要がある。

なお、行列の掛け算では、結合の法則及び分配の法則が成り立つ。すなわち、行列A、B、C、に関して、次の式が成り立つ。

結合の法則

\[(A B) C = A (B C)\]

分配の法則

\[A (B \pm C) = A B \pm AC \quad (B \pm C) A = B A \pm CA\]

ただし、これらの中の行列A、B、Cは、それぞれの式において演算ができるような型のものでなければならないうちの行列数と数との乗算

行列と数との間に、掛け算だけが考えられる。ある行列をある数を掛けるには、その数の逆数を掛けるということである。これは、掛け算として行うことができる。

ある行列Aとある数Kとの掛け算とは、行列Aの各要素にKを掛けることをいい、KA又はAKと表す。数は前から掛けても後から掛けても同じである。

したがって、

\[K A = K (a_{ij}) = (K a_{ij}) \]

例えば、A及びKを

\[A = \begin{bmatrix}
4 & 2 & 8 & 6 \\
1 & 5 & 3 & 4 \\
2 & 9 & 0 & 5
\end{bmatrix}, \quad K = \begin{bmatrix}
8 & 4 & 16 & 12 \\
2 & 10 & 6 & 8 \\
4 & 18 & 0 & 10
\end{bmatrix}\]

すると、KAは次のようになる。

\[K A = \begin{bmatrix}
32 & 64 & 128 & 96 \\
16 & 20 & 24 & 18 \\
32 & 36 & 48 & 36
\end{bmatrix}\]

エ. 逆行列

正方形行列Aに対して、次式を満たすAの存在するとき、

\[A A^{-1} = I\]

このとき、Aの逆行列という。また、\[A^{-1} A = I\]

が成立立つ。

ここで、（2, 2）型正方形行列の逆行列の求め方を示すこととする。

\[A = \begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix}\]

すると、\[a_{11} a_{22} - a_{12} a_{21} \neq 0\]のとき、

\[A^{-1} = \frac{1}{a_{11} a_{22} - a_{12} a_{21}} \begin{bmatrix}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{bmatrix}\]

となる。

例えば、

\[A = \begin{bmatrix}
2 & 1 \\
5 & 3
\end{bmatrix}\]

すると、Aの逆行列は次のようになる。

\[A^{-1} = \frac{1}{2 \times 3 - 1 \times 5} \begin{bmatrix}
3 & \triangle 1 \\
\triangle 5 & 2
\end{bmatrix} = \begin{bmatrix}
3 & \triangle 1 \\
\triangle 5 & 2
\end{bmatrix}\]

検算すると、

\[A A^{-1} = \begin{bmatrix}
2 & 1 \\
5 & 3
\end{bmatrix} \begin{bmatrix}
3 & \triangle 1 \\
\triangle 5 & 2
\end{bmatrix} = \begin{bmatrix}
2 \times 3 + 1 \times (\triangle 5) & 2 \times (\triangle 1) + 1 \times 2 \\
5 \times 3 + 3 \times (\triangle 5) & 5 \times (\triangle 1) + 3 \times 2
\end{bmatrix} = \begin{bmatrix}
10 & 1 \\
0 & 1
\end{bmatrix} = I\]

となる。

ただし、この行列の求め方は、（2, 2）型行列のときに限り、行列の多い行列には適用できない。
別の計算方法によって、高次の行列の逆行列を求めることはできるが、手計算では、時間がかかりすぎて実用的ではない。そのため、実際の計算には表計算ソフトを使うのが無難である。

(4) 表計算ソフトによる行列の演算

表計算ソフトによる行列の演算ということで、「Microsoft Excel」を使用して行列の乗算（掛け算）と逆行列係数を計算してみよう。

A. 行列乘算

2つの行列の掛け算を計算するには MMULT 関数を使用する。

<table>
<thead>
<tr>
<th>計算例</th>
<th>列番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>行列 A</td>
<td>A</td>
</tr>
<tr>
<td>行番号</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>行列 B</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

計算結果

<table>
<thead>
<tr>
<th>行列 AB</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>60</td>
<td>68</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>37</td>
<td>74</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>49</td>
<td>40</td>
<td>23</td>
</tr>
</tbody>
</table>

イ. 逆行列

逆行列を計算するには MINVERSE 関数を使用する。

<table>
<thead>
<tr>
<th>計算例</th>
<th>列番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>行列 A</td>
<td>A</td>
</tr>
<tr>
<td>行番号</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

計算結果

<table>
<thead>
<tr>
<th>行列 A⁻¹</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.02609</td>
<td>0.11304</td>
</tr>
<tr>
<td>7</td>
<td>0.01739</td>
<td>-0.00870</td>
</tr>
</tbody>
</table>

計算手順

1. 計算結果を出力する範囲を指定する。
 計算例 セルA6：B7 をドラッグする。
2. 計算式を入力する。（入力式: =MINVERSE (行列Aの範囲)
 計算例 ①で指定した範囲のまま,
 = MINVERSE (A1:B2) と入力する。
3. [Shift] キーと [Ctrl] キーを押しながら，
 [Enter] キーを押す。
4. 計算結果が出力される。