ハウスニラ栽培における養分収支と土壌養分

[要約] ハウスニラ栽培では、1年目株養成期間の窒素利用効率が低い。養分吸収量は、加里、窒素、石灰、リン酸、苦土の順に多いが、その養分吸収量に対して、石灰、リン酸は特に施用量が多く、土壌への負荷が大きい。また、石灰と加里は作土層よりも下層土に多く、溶脱している。硝酸態窒素も作土層よりも下層土に多いが、その値は6mg/100g乾土程度であった。

農業総合センター園芸研究所

成果区分

研究

1. 背景・ねらい

野菜栽培が盛んな地域では、有機物や化学肥料が過剰に土壌に投入され、吸収されずに土壌に 残った肥料成分(硝酸態窒素等)が雨等により溶脱し、地下水汚染が懸念されている。その理由 としては、作物の養分吸収量に対して過剰な量の施肥を行うためであるが、ハウスニラについて は、養分吸収量の資料があまりない。そこで、ハウスニラにおいて、養分収支について調査し、 今後の施肥指導の基礎資料とする。

2. 成果の内容・特徴

- 1) 現地のハウスニラ栽培では、年中ビニルを展張しているわけではなく、5~6月に定植後、1年目の株養成期間は露地状態で、2年目に入り冬の低温期にビニルを展張して収穫を開始する。その後、夏に一時ビニルをはずして露地状態として株養成を行い、秋~冬にビニルを展張して収穫を行う(表1)。
- 2) 1年目の株養成期間の窒素施用量は、化成で47 kg/10 a、鶏糞の窒素成分86 kg/10 a を考慮すると合わせて132 kg/10 a であったが、1年目の株養成期間の窒素吸収量は7 kg/10 a しかなく、作物に利用されない窒素が多い(表1、2)。
- 3) 収穫が始まる2年目の窒素施用量は化成で47kg/10aであったが、2年目の収穫分と刈り捨て分の合計窒素吸収量は33kg/10aであり、1年目の株養成期間より利用された窒素が多い。なお、収穫1回当たりの収穫葉の平均窒素吸収量は4.3kg/10aであった(表1、2)。
- 4) 2 年間合計の肥料成分投入量は、石灰、リン酸、窒素と加里、苦土の順に多い。特に石灰の施用量が 1,545kg/10a (化成と土改材が 318kg/10a、鶏糞で 1227kg/10a) と最も多く、次いでリン酸の施用量が 411kg/10a (化成と土改材が 109kg/10a、鶏糞で 302kg/10a) と多い。窒素と加里の施用量は約 180kg/10a と同程度で、苦土の施用量は 120kg/10a であった (表 2)。
- 5) 2 年間合計の養分吸収量は、加里、窒素、石灰、リン酸、苦土の順に多い。加里は 60kg/10a、 窒素は 39kg/10a、石灰は 18kg/10a、リン酸は 8kg/10a、苦土は 4kg/10a であった (表 2)。
- 6)2年間合計で施用した肥料成分が多いため、作物による吸収量をいずれの成分も上回っている。特に石灰とリン酸の土壌に対する負荷が多い(表2)。
- 7) 栽培終了後の土壌養分を深さ別にみると、施用量の多い石灰は蓄積されており、深さ 40cm まで1,000mg/100g 乾土以上、深さ 200cm まで 300mg/100g 乾土以上あり、作土層より下層に溶 脱している。その結果 p Hも高く、深さ 60cm までは 7 以上、深さ 200cm まで 6 以上ある。また、 硝酸態窒素と加里は作土層よりも下層土で多く (硝酸態窒素は深さ 80-140cm、加里は深さ 140-180cm)、徐々に溶脱している。ただし、硝酸態窒素は深さ 200cm まで 10mg/100g 乾土以下 であった。 E C は硝酸態窒素と同様の傾向である。その他、リン酸と苦土は、作土層では多いが下層土では少なく、溶脱は少ない (表 3)。

3. 成果の活用面・留意点

- 1) この調査は、小川町の現地パイプハウスで行い、表層腐植質黒ボク土での結果である。
- 2) 所内の露地ニラにおいて、特に窒素利用効率の低い1年目の株養成期間について、窒素施用量の低減および効率的施肥法を検討中である(ハウスニラでも1年目の株養成期間は露地)。

4. 具体的なデータ

表1 現地ハウスニラの栽培概要

<u> </u>															
1年目(2002年)						2年目(2003年)									
露地(株養成)					露地	露地 ハウス			露地				ハウス		
堆肥	土改材	定植	追肥	追肥	葉	追肥	収穫	収穫	収穫	収穫	花刈	追肥	刈り捨て	追肥	収穫
4/10 4/22 6/20 6/26 9/11 枯					1/26	3/27	4/24	5/20	7/1		9/1	9/25	10/12	11/4	
鶏糞10t P・Ca・Mg			N15	N32		N17						N16		N15	

[※]品種はスーパーグリーンベルト。

追肥の数字は10a当たりの窒素分kg。

堆肥の種類はバーク鶏糞。土改材は苦土石灰400kg/10aとようりん150kg/10aを施用。

1年目の露地(株養成)の葉枯は、11月下旬に霜によって地上部が枯死したことを指す。

表2 定植から最後の収穫(5回目)までの約2年間の養分収支(kg/10a)

肥料				収入				支出	収 支(鶏糞		
成分	肥料分				苗	合計 (鶏糞		作物吸収	- 除く)		
	1年目株養成 2年目 合計					除く)	1年目	2年	入 出		
	鶏糞	化成等	化成	•			養成株	収穫葉	刈捨て	•	
窒素	86	47	47	179	0.2	179 (94)	7	$4.3 \times 5 = 22$	11	39	140 (54)
リン酸	302	77	33	411	0.1	411 (109)	2	$0.8 \times 5 = 4$	2	8	403 (101)
加里	106	42	33	180	0.3	180 (74)	10	$7.2 \times 5 = 36$	14	60	120 (15)
石灰	1227	220	98	1545	0.1	1545 (318)	4	$1.5 \times 5 = 8$	7	18	1527 (300)
苦土	60	62	0	122	0.0	122 (62)	1	$0.3 \times 5 = 2$	1	4	118 (59)

[※]収入の合計と収入-支出の()内数字は鶏糞の成分を除いた数字。

表4 栽培終了後約3ヶ月(2004年1月採土)の深さ別土壌分析結果

深さ		pH EC		CEC	硝酸態窒素	リン酸	加里	石灰	苦土	石灰/苦土比	苦土/加里比
		(KCl)	(dS/m)	(me)		(mg/	100g乾±			(当量比)	(当量比)
施肥基準		5.5-6.0				20-80	55-70	470-500	60-90	4.0 - 5.5	2.5-3.0
作付前	0-15cm	6.79	0.12		2.5	294	124	1238	57	15.5	1.1
作付後	0-20cm	7.75	0.22	30.8	3.2	203	95	1483	86	12.3	2.1
	20-40cm	7.92	0.40	25.3	4.5	20	99	1158	53	15.6	1.3
	40-60cm	7.55	0.43	22.1	5.4	1	97	650	32	14.3	0.8
	60-80cm	6.70	0.39	20.7	4.2	0	59	325	21	11.2	0.8
	80-100cm	6.77	0.56	23.0	6.3	2	61	584	29	14.3	1.1
	100-120cm	6.68	0.56	21.9	6.2	3	84	534	28	13.8	0.8
	120-140cm	6.84	0.60	23.8	6.3	9	98	603	31	13.8	0.7
	140-160cm	6.19	0.43	21.5	3.5	0	158	309	21	10.6	0.3
	160-180cm	6.32	0.47	20.1	3.2	3	168	363	22	11.8	0.3
	180-200cm	6.28	0.35	16.4	2.5	17	76	410	34	8.7	1.0

[※]作付前の土壌は、すでに鶏糞が投入された後のものである。

5. 試験課題名・試験期間・担当研究室(協力機関)

環境保全型研究開発事業 (露地野菜における持続性の高い施肥技術の開発)・平成 13~16 年度 ・土壌肥料研究室 (水戸地域農業改良普及センター)

今回の作物吸収分は、葉と茎の養分吸収量で、花と根の養分吸収量は含んでいない。

今回の養分収支では、雨水や潅水による養分の収支は考慮していない。

支出の作物吸収分の収穫葉の数字は、収穫1回当たりの平均吸収量×収穫回数=収穫5回分の吸収量。 5回収穫合計の収量は4,890kg/10aと少な目であった。

通常は6~8回収穫し、標準収量は9,500kg/10a(県野菜栽培基準)。

施肥基準は、県土壌診断マニュアルの施設栽培土壌の火山灰土壌CEC30の値である。