ナガイモえそモザイク病無発病株の選抜について

河野 隆・秋山 実*・岩瀬 一行**・鯨澤 登***
下長根 鴻・中川 悦男・石 存・新妻 芳弘

ナガイモのウィルス無発病株を得る目的で、寒冷硬さを伝え全面にトンネル状に覆い、その中で、1977年に病原を示さなかった農家産のナガイモを栽培し、飛来するアブラムシによる感染防止と殺虫剤の散布、発病株の扱い取りを行った。この方法を実施した初年度の1978年にヤマノイモえそモザイク病（Chinese yam necrotic mosaic virus … CYNMV）無発病個体6株が得られた。この6株はその後6系統として選抜を進めたが、何れの系統にも発病は見られなかった。しかし、この母株に着生したムカゴは翌年15.8%の発病があったことから、母株は無発病株であるがウィルスを保有しているものもあると推察された。このような栽培法と発病株の扱い取りによる選抜を繰り返した結果、2年後の1980年産のムカゴは全く病徴を示さなくなった。このことによって、それ以降の母本及びムカゴも全く病徴を示さない無発病の母本が得られた。この母本は一般農家間の種子に比べ新生地基（担種体）が10〜30%程度重かかった。

ここで得られた無発病いものムカゴを標高520 mの圃場（図実村）で寒冷硬さを被覆しない露地栽培をしたが、代々感染による発病は見られなかった。現地のアブラムシの種類、発生生態を確認する必要はあるが、地域におけるアブラムシ類の発生が少なく、種稲の生産地として可能性は高いものと考えられた。

なお、1981年に6系統の中からいの形を、色、首の長さなどを考慮し最終的に№5の系統を選抜し、母本の保存とムカゴの採種を行っている。

I はじめに

茨城県のナガイモ栽培は1965年頃から県北の常北町、那珂町、水戸市を中心にゴボウとの組み合わせで導入され、1982年で740台の作付面積、11,406 tの出荷数がある。

最近ナガイモ栽培において褐色腐敗病や平いもの発生等とともにウィルス病が問題となり、その対策が急がれている。このウィルス病はヤマノイモえそモザイク病（Chinese yam necrotic mosaic virus … CYNMV）で、種も、アブラムシ等によって伝染する。罹病株は葉脈間に黄緑色の病斑を生じ、その後葉変部は次第に褐変してえそ症状となり、いわゆるえそモザイクの病徴を示す。出芽後間もなく病徴が現われるが、高温時には病徴が不明瞭となる。収量も健全株に対し30〜40%程度減収することが知られている。

写真1 左：健全葉 右：罹病葉

* 現茨城県北地方総合事務所農林課
** 現茨城県農林水産部改良普及課
*** 現茨城県農林水産部営農指導課

—33—
青森県ではこのウィルス病対策として根頂培養によるウィルスフリー株を作出し、これを栽培農家へ供給する計画を進めている。また、北海道中央農試、青森県畑作園試、宮城県農業センター（原種）などでも組織培養法によるウィルスフリー株養成を目的として培地条件、培養日数の検討が進められている。本県においては栽培農家の単収増を図るため、選抜による無病病株本の獲得と、得られた母株の増殖法・切いもによる方法、ムカゴによる方法を検討してきた。一般的な切いもによる増殖法は現在報告されているもの、ここで主に無病病株母株の増殖での経過と、ムカゴによる無病病株切いも増殖の可能性および現地における成果などの概要を報告し、関係者との参考に供したい。なお、1981年から国営試験場において茎頂培養による無病株作成の試験が進められている。

II メガイモそそりモザイク病無病株
供試試験（1977 ～ 81年）

1 供試材料および試験方法
(1) 種いも材料の採取
県内外産地の中で発病程度が低いと認知された東北地方亀戸・ハタモチ種の栽培農家で無病株と見られた土（親いも・ムカゴ）を1976年秋に採取、1977年から場内に栽培した。

(2) 供試種いも
1977年は前記種いもを材料とし、その後は前年発病

Rock 1: 発病株
2. 1978年の無病株に5株と8年に18株の系統番号を付した。

第1図 選抜経過および年次別発病程度（1977 ～ 81年）

-34-
ナガイモをそしてオモザイク病無発病株の選抜について

塊茎（担根体）の実測を行った。

2 試験結果および考察

供試した材料について、1977 年から'81年までのヤマ
ノイモをそしてオモザイク病の発病経過を第1図に示した。

浅野氏圃場産の無発病株を植付けた第1年目（1977年）
の発病株率は、親もを切って種をした切いもが45.9％、
ムカゴが39.6％であった。これは当該ウィルスが傷ごう
に潜んでいたか、あるいは寒冷紗の被覆の周囲に張った
だけの試験であったため、アブラムシの飛び込みによ
り当該感染があったものと考えられた。

1978年も前年発病が認められなかった株とその株に
着生したムカゴを穂としたが、それらの発病率は切いも
が94.1％、ムカゴが99.3％と極めて高かった。この年
から寒冷紗の被覆をトンネル状に整間面に覆っているの
で、アブラムシ飛び込みによるウィルス感染の可能性はほ
とんど考えられず、ムカゴの発病率からも推定できるよ
うに、母本である親いも（1977年に発病が認められなか
った株……1978年切いもとして供試）の大部分が既にウィ
ルスに感染していたものと考えられた。また、病菌発
現時期についてみると、本葉2〜3葉期頃（6月中旬〜下
旬）切いもで50％程度、ムカゴは70〜80％程度発病
していた。罹病いもを植付けた場合は、出芽後本葉の展
開期頃、速くとも生育期前半に発病するとの報告3）が
あり、ウィルスが傷ごうに潜んでいたことが十分考え
られた。このような発病状況の中にあって6株の無発病
株が得られたのは非常に幸であった。この6株にNo 1
〜No 6の系統番号を付し、以後系統別に調査することとした。

3年目の1979年は初めて切いも（親いも）の発病率が
0％であったが、ムカゴは15.6％発病していたので、ま
だ種いもに潜在的にウィルス病が残存されていることが
考えられた。しかし、当該感染をなくした栽培法のもと
では年次を経るにつれて、ウィルスの濃度が低下するた
めか、ムカゴの発病率が1980年5.6％、1981年0％と
なった。このことは1980年に切いも、ムカゴとも発病しな
い6系統の無発病母本が得られたことを示すものである。

ナガイモのウィルス検査については適当な指標植物がな
く電子顕微鏡による粒子の観察以外がないので、この試験
では検定を行っていないので完全な無発病母本であるかど
うかは確認していない。

1981年の採集後にこれ6系統のいもを比較し、ピーク、
偏平いも（平いも）が少なく、首が短く塊茎（担根体）
が粗大しているNo 4とNo 5の系統を選抜した（図の試験
に供試）。この2系統のいもげの概貌は第1表のとおりである。

なお、1982年も寒冷紗の被覆栽培を行った場合は選
抜した系統には切いも、ムカゴとも発病は見られなかっ
た（第3表本場の項）。

第1表 いもの収量調査（1981）

<table>
<thead>
<tr>
<th>系統番号</th>
<th>いも重（g）</th>
<th>いも長（cm）</th>
<th>帯（cm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>No 4</td>
<td>1770 ± 690</td>
<td>92 ± 10</td>
<td>5.9 ± 1.2</td>
</tr>
<tr>
<td>No 5</td>
<td>1730 ± 430</td>
<td>94 ± 4</td>
<td>6.5 ± 0.8</td>
</tr>
</tbody>
</table>

（注）1. 帯は概ね中心部で測定
2. 供試株はNo 4が16株、No 5が13株

III 高冷地における種いも養成試験
（1980〜1981年）

高冷地でアブラムシの発生が少ない場所なら寒冷紗で
被覆する必要がなく、実用上ウィルス感染をほぼ防げ
ることが考えられる。このような場所でムカゴを栽培し、
母本の保種程度を確認すると同時にムカゴから種いも
（1年生）を養成する場所として適当であるかどうかを
検討した。

1 実施場所および試験方法

（1）実施場所
標高520 mの久慈郡里美村里川の砂礫土の畑で実施
した。

（2）供試種いも
1979年、'80年に無発病の母本から採種したムカゴを
材料とした。

（3）栽培方法
Ⅱの試験に準ずるが、アブラムシ防除のための寒冷紗
被覆は行わず、殺虫剤の散布回数も2回程度とした。
(4) 調査方法

IIの試験に同じ。

2 試験結果および考察

1980年はNo.1～No.6の系統について時期別の発病株数を調査し（里美村…寒冷砂無被覆、農試場内…被覆と無被覆）結果を比較した（第2表）。1979年

<table>
<thead>
<tr>
<th>場所</th>
<th>系統番号</th>
<th>出芽株数</th>
<th>発病株数</th>
<th>7/7</th>
<th>8/7</th>
<th>8/21</th>
<th>9/3</th>
<th>発病株数</th>
<th>縮小</th>
</tr>
</thead>
<tbody>
<tr>
<td>里美村</td>
<td>1</td>
<td>20</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>40.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>115</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>10.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>場所</th>
<th>系統番号</th>
<th>出芽株数</th>
<th>発病株数</th>
<th>7/7</th>
<th>8/7</th>
<th>8/21</th>
<th>9/3</th>
<th>発病株数</th>
<th>縮小</th>
</tr>
</thead>
<tbody>
<tr>
<td>里美村</td>
<td>1</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>6.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>6.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>179</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>場所</th>
<th>系統番号</th>
<th>出芽株数</th>
<th>発病株数</th>
<th>7/7</th>
<th>8/7</th>
<th>8/21</th>
<th>9/3</th>
<th>発病株数</th>
<th>縮小</th>
</tr>
</thead>
<tbody>
<tr>
<td>里美村</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>20.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>22.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>59</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) 1981年

<table>
<thead>
<tr>
<th>場所</th>
<th>系統番号</th>
<th>出芽株数</th>
<th>発病株数</th>
<th>収量調査（1個体当たりの平均値）</th>
</tr>
</thead>
<tbody>
<tr>
<td>里美村</td>
<td>4</td>
<td>30</td>
<td>0</td>
<td>いも重（g） 330 ± 70 45 ± 6 4.1 ± 0.7</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>0</td>
<td>いも長（cm） 320 ± 50 41 ± 4 4.3 ± 0.6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>0</td>
<td>いも巾（cm） - - -</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>4</td>
<td>30</td>
<td>0</td>
<td>いも重（g） 470 ± 100 69 ± 9 3.6 ± 0.3</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>0</td>
<td>いも長（cm） 370 ± 90 64 ± 7 3.5 ± 0.3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>0</td>
<td>いも巾（cm） - - -</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>4</td>
<td>27</td>
<td>14.3</td>
<td>いも重（g） 350 ± 110 52 ± 8 3.6 ± 0.5</td>
</tr>
<tr>
<td>場内</td>
<td>5</td>
<td>28</td>
<td>14.3</td>
<td>いも長（cm） 410 ± 140 66 ± 10 3.4 ± 0.4</td>
</tr>
<tr>
<td>合計</td>
<td>6</td>
<td>28</td>
<td>7.1</td>
<td>いも重（g） - - -</td>
</tr>
</tbody>
</table>

(注) 1. 収量調査の数字は極端な大・小いもの数字を除いてあり、発病株数も調査対象に含めた。
産のムカゴの発病率（1980年調査）が5.6％であることとは前に述べたが、この発病は全面被覆条件下で起こっているので、親いものに潜在していたウィルスがムカゴに感染していたものと考えられる。試験場内の被覆のない条件では系統により差は見られるものの10.2%で里美村の無被覆とはほぼ同じであるが、試験場内の被覆条件の5.6％よりやや多い。しかし、大部分の発病が試験場内の被覆栽培と同様8月21日までで以後は発病していない。即ち、発病率20％程度の系統は当代理種と考えられるが、他の系統は発病が生育期の前半であることから親いも由来が主な原因であると考えられた。里美村の10.4%の発病の主な原因も親いものの潜在的なウィルスによるもので、現地での感染の可能性は低いと考えられた。また、No.6の系統には発病株が無かったのが目撃された。

1981年はいものも形、充実度の良いNo.4～No.6の系統（ムカゴ）を供試した。第2表の2の被覆条件の結果から理解されるように、親いもから感染したウィルスによる発病は0％、当代理種と見られる発病は7～15％であった。里美村においても発病が見られないことから、標準の高い場所（520 m）でのアブラムシによるウィルス感染はほとんどないものと考えられる。したがって、アブラムシの発生生態をさらに詳しく確認する必要があるが、標高520 m程度の里美村の通いも（1年生）を養成する場所として適地であると判断された。

Ⅳ 無発病種いもの現地実証試験
（1982年）

選抜されたヤマノイモモザク病無発病種いものを一般農家の種いものと比較し、その優良性を明らかにした。

１ 供試材料および試験方法

(1) 供試種いも

選抜系統No.4とNo.5について、1個の大きさ120～150 g程度に切った切いもを各々10個と現地産の切いも20個、ムカゴについても同様に選抜系統から各々10個と現地産20個を対比した。現地産のムカゴは選抜系統のムカゴよりも大きかった。

(2) 実施場所

那珂郡那珂町戸、東茨城郡常北町石塚の2ケ所で行い、農業試験場内成績も参考とした。

(3) 栽培方法

<table>
<thead>
<tr>
<th>那珂町</th>
<th>常北町</th>
<th>農業試験場</th>
</tr>
</thead>
<tbody>
<tr>
<td>植付時期</td>
<td>4月28日</td>
<td>4月7日</td>
</tr>
<tr>
<td>植付密度</td>
<td>切いも 60×30 cm</td>
<td>60×30 cm</td>
</tr>
<tr>
<td></td>
<td>ムカゴ 60×5 cm</td>
<td>60×10 cm</td>
</tr>
</tbody>
</table>

アブラムシンによる寒冷処理を施し、支柱栽培で実施した。その他の比較は慣行に従った。

2 試験結果および考察

那珂町、常北町両園場とも比較的早い時期（7月下旬）から選抜系統にも発病が認められた（第3表）。この発病は切いも、ムカゴとも現地産より選抜系統の方が明らかに少なかった。両地区の選抜系統の発病を見ると、同じ種いもであるが農業試験場内の寒冷処理栽培では発病していないので、アブラムシンによるウィルスの発病が起きたものと考えられた。このことからも標準の低い平地での種いも栽培は被覆によってアブラムシンを防ぐ必要があがることが示された。種いもしない場合は当代理種があっても収量に及ぼす影響は小さいので実用的には問題がないものと考えられる。

生産された新生塊茎（担根体）については（第4表）切いもの場合、選抜系統の方が那珂町で30％程度、常北町で10％程度重くても長さ10cm程度のムカゴを用いた場合は両地区ともNo.5の系統が優れていた。常北町で
1）那珂町（摂取 10月27日）

<table>
<thead>
<tr>
<th>種いもの種類調査の産地</th>
<th>切り</th>
<th>いも</th>
<th>ムカゴ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>いも重(kg)</td>
<td>同左CV(％)</td>
<td>いも長(cm)</td>
</tr>
<tr>
<td>選抜系統</td>
<td>No 4</td>
<td>1017±195</td>
<td>19</td>
</tr>
<tr>
<td>No 5</td>
<td>955±198</td>
<td>21</td>
<td>85±7</td>
</tr>
<tr>
<td>現地産</td>
<td>747±196</td>
<td>26</td>
<td>75±9</td>
</tr>
</tbody>
</table>

2）常北町（摂取 11月16日）

<table>
<thead>
<tr>
<th>種いもの種類調査の産地</th>
<th>切り</th>
<th>いも</th>
<th>ムカゴ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>いも重(kg)</td>
<td>同左CV(％)</td>
<td>いも長(cm)</td>
</tr>
<tr>
<td>選抜系統</td>
<td>No 4</td>
<td>1246±410</td>
<td>33</td>
</tr>
<tr>
<td>No 5</td>
<td>1300±318</td>
<td>24</td>
<td>89±6</td>
</tr>
<tr>
<td>現地産</td>
<td>1131±247</td>
<td>22</td>
<td>79±10</td>
</tr>
</tbody>
</table>

3）御本町（摂取 12月10日）

<table>
<thead>
<tr>
<th>種いもの種類調査の系統</th>
<th>切り</th>
<th>いも</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>いも重(kg)</td>
<td>同左CV(％)</td>
</tr>
<tr>
<td>選抜系統</td>
<td>No 4</td>
<td>1443±266</td>
</tr>
<tr>
<td>No 5</td>
<td>1289±203</td>
<td>16</td>
</tr>
</tbody>
</table>

（注）1. 中は概ね中心部で測定
2. 首長は径が2cm以下の部分の長さ
3. 発病株も調査対象に含まれている
4. 本場の栽培密度は90×30cmで、調査株は各5〜7株

はNo 4の系統と現地産のものに27〜55％の平なもの発生した。

以上の結果、選抜系統は収量的にも優れていることが実証された。なお、この成績を参考にいもの形の良いNo 5の系統をヤマノイモえもソマヤク病無発病母本として最終的に選抜し（写真2），母本の保存とムカゴの栽培を行っている。

この試験で農業試験場内の切いもを種いもとした栽培は、覆土を含めて15cm程度の深植えにしたため出芽率が低かったが（34％），新生塊茎の首の長さが現地試験のものより8〜11cm短かいうことが観察された。不定芽を生長させる切いもは出芽障害が心配されるが、深植えに
より首部の短かいものが生産されることを興味深く考えた。

V 摘要

1. ウィルス病感染程度の低いナガイモを、寒冷期を
トンネル状に多面に植え植え殺虫剤を散布してアブラムシを防ぐ条件下で栽培し、発病株を抜き取り操作を3年程度繰り返すことにより検定も、ウカゴを含むノイモイモ
タモデザイク病が発病しない苗本を6株選択した（1980
年）。

2. 標高の高い場所（里美村川）での栽培はアブラムシが少なく、寒冷期の無被覆でもウィルスの発生が少なくて、収量的にも優れていることを実証した。

3. 農家の慣行栽培において無発病の選抜系統は、現地農家が本種に通じるウィルス病の発生が少なく、収量的的にも優れていることを実証した。

4. 無発病の6系統の苗本の中から良いものの形、充実度
などを考慮して、最終的にNo.5の系統をノイモイモ
タモデザイク病無発病苗本として選抜した（1982年）、この苗本の保存とウカゴによる増殖を進めている。

5. 15cm程度の深植えにすると出芽歩合はやや低下するが、新種塊茎（担根体）の首部の長さがやや短か
くなることが観察された。

本試験の遂行に当たり終始ご協力いただいた茨城県
農林水産部流通園芸課、県経済連青果課、水府・高河・
常北地区農業改良普及所の関係各位並びに現地試験担当
農家の方々に厚くお礼申し上げる。また、貴重な御意見
と御観察を賜った元農業試験場長黒沢晃氏、飯田栄氏、
調査・選抜に御協力御意見をいただいた当農試植物部、
管理部の各位、および本報告発表の機会を与えられた御校閲をいただいた関口計主場長、吉原貴副場長に心から感謝申し上げる。

参考文献

1）茨城県（1984）：茨城の園芸
2）清水節夫他（1974）：ノイモイモタモデザイク病と
その伝染について、長野農試報告 38, 248〜260。
3）本田宏一他（1978）：ノイモの省力増収栽培技術
体系の確立に関する研究、茨城農試研報19, 55〜108。
4）農林水産省野菜試験場編（1982）：栄養繁殖性葉
根菜類の品種と栽培上の諸問題に関する成績概要
5）清水節夫他（1973）： lange もウィルス症状の伝染
に関する知見 第3報、関東葉山病虫研年報. 20, 51.
転作ダイズを加害する害虫類の発生と防除

稲生 稔・原 敬之助*・上田 康郎**
菊地 久稀***・小森 隆太郎

I 緒 言

水田転作ダイズとしてマツダの栽培が各地に増加しつつあるが、生産安定の大きな要因として害虫類の防除対策

II 県内における主要害虫の発生と被害

実態

転作ダイズを対象に県北・鹿行・県南・県西地域の害虫

材料および方法

1978年から3年間各防除所が行なった調査地点と圃場

第1表 各防除所管内の年次別調査品種名

<table>
<thead>
<tr>
<th>場所</th>
<th>水戸防除所（県北）</th>
<th>鈴田防除所（鹿行）</th>
<th>土浦防除所（県南）</th>
<th>下館防除所（県西）</th>
</tr>
</thead>
<tbody>
<tr>
<td>年次</td>
<td>大子</td>
<td>金砂郷</td>
<td>水戸</td>
<td>鈴田</td>
</tr>
<tr>
<td>1978</td>
<td>納小</td>
<td>納小</td>
<td>農2</td>
<td>タシズ</td>
</tr>
<tr>
<td>70</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>80</td>
<td>銭1</td>
<td>納小</td>
<td>エンレイ</td>
<td>エンレイ</td>
</tr>
</tbody>
</table>

【品種名】" 納小＝納豆小粒、農2＝農林2号、タシズ＝タシズナリ、荷1＝革新1号

* 土浦病害虫防除所 ** 下館病害虫防除所
*** 鈴田病害虫防除所

一41一
長初期にはサヤマバエ、栽培中長期から収穫期ではカメムシ類とシロイチモジマダラメイガ、サヤムシ類であった。アブラムシ類の多発は褐斑粒の発生を多くし、カメムシ類とシロイチモジマダラメイガの子実害虫は県内各地で発生が多かった。とくに県南、県西地域ではカメムシ類が子実害大期に多く被害粒も多発した。

転作ダイズの栽培圃場でカメムシ類の生息が多いことから、各地域における主要な種類について調査した。結果は第2表のとおりである。

第2表 県内における主要カメムシの生息順位

<table>
<thead>
<tr>
<th>地域</th>
<th>1978</th>
<th>1979</th>
<th>1980</th>
</tr>
</thead>
<tbody>
<tr>
<td>戸児</td>
<td>I II</td>
<td>III</td>
<td>I II</td>
</tr>
<tr>
<td>地域</td>
<td>県北</td>
<td>アオホソイチ</td>
<td>アオホソマル</td>
</tr>
</tbody>
</table>

圃場内で生息が確認されたカメムシはアオクサカメムシ、イチモジカメムシ、ホソヘルカメムシが年次とも多く、トゲシラホシカメムシ、マルカメムシおよびクサギカメムシは年次によって観察される程度の少発生であった。これらカメムシ類の地域別生息順位を見ると、県北では各年ともアオクサカメムシが多く、次いでホソヘルカメムシであった。トゲシラホシカメムシやマルカメムシなどは少なく、年次によって発生順位は異なった。県南地域では各年次ともイチモジカメムシの生息が優位をしめ、次いでアオクサカメムシ、ホソヘルカメムシの順であり、県北地域とはやや生息順位が異なった。この傾向は県西地域でも同様であった。

このように県内の転作ダイズではカメムシ類の発生順位が地域によって異なり、県北ではアオカマムシの生息が多く、県南および県西地域ではイチモジカメムシが常に優先種であることがわかった。

次に県内の転作ダイズにおける被害粒の発生を第1図に示した。

各調査圃場における被害粒の発生を見ると、鹿行、県南、県西の被害粒率（無防除）は50％以上高く、県北の大子、金砂郷では10％以下と前者に比較して低率を示した。これに対し水戸では20 － 40％と両者の中間であり、本県の転作ダイズの被害も従来の知見3と同様に県南から県北にかけて少なくなっていた。

これら被害について発生の多かったカメムシ類、シロイチモジマダラメイガの被害粒率を第2図に示した。
転作ダイズを加害する害虫類の発生と防除

カメムシ類による被害率の発生は、潮来・河内・新治・下館・結城など県南西地域でもっとも多く、次いで水戸・千葉地域となり、大子、金砂郡ではきわめて発生が少なかった。シロイチモジマグラメイアの被害率はカメムシ類に比して全体的に少なかったが、県南・県西に比較して県北は少発生であった。

以上のように県南および県西地域の無防除の転作ダイズでは、前記2種の害虫によって被害率は60～90％と高率に加害され、その被害率はカメムシの吸汁によるもののがきわめて多かった。これに対し県北の大子、金砂郡では両種による被害率が各年次とも約10％で、県南県西地域に比し少なかった。従来から県北部の山間地域でダイズ栽培が定着していることは、この地域の虫害相が寒冷年は東北地域の第1地域に、また温暖年は関東以南の第四地域となる第2地域に位置するため害虫類の発生が少なく、無防除でも可成りの収量が得られるためと思われる。

Ⅲ 転作ダイズの害虫に対する各種薬剤の防除効果

1978年から1982年まで県南（被害多発地）と県北（被害少発地）において各種殺虫剤の散布時期、回数による防除効果および殺虫剤の混用散布による病害虫の同時防除試験を行なった。また1978年に県南において褐斑粒（ウィルス）の防除試験を実施した。

<table>
<thead>
<tr>
<th>薬剤名・散布量</th>
<th>7/27</th>
<th>8/4</th>
<th>14</th>
<th>23</th>
<th>9/3</th>
<th>健全粒率</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEP 2％粉剤（4kg/10a）</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>50</td>
</tr>
<tr>
<td>MPP 2％粉剤（4kg/10a）</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>50</td>
</tr>
<tr>
<td>無散布</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>50</td>
</tr>
</tbody>
</table>

第3図 転作ダイズにおける害虫の防除効果（県南・1978）

1 県南における子実害虫の防除効果
(1) 材料および方法
新治郡新治村田宮において、1978年は転作2年目の圃場に品種・農林2号を6月12日に播種して試験を行なった。畦幅60cm、株間15cm、施肥は化成（5・20・20）a当り60K、1区1aの1区制、前作は二条大麦で刈取りは6月3日、供試薬剤および散布時期・量は第3図のとおりである。調査は10月4～5日（収穫期）に各区10株を任意に抜きとり、被害率の発生を虫害別に行なった。
1978年は同一場所の転作3年目の圃場に品種・エンレイを6月16日播種した。畦幅70cm、株間10cm、施肥は78年と同じ、1区1aで2区制、供試薬剤および散布時期は第4図のとおり、液剤は10a当り200Eを小型動力噴霧機、粉剤は10a当り4kgを手動散布器で散布した。なお褐斑粒発生防止のためエチレチオメトリン剤を各区に10a当り6kg播種処理を行なった。調査は10月13日（収穫期）に前年同様実施した。1980年は前年使用した場所に近い転作1年目の圃場に品種・エンレイを6月20日播種した。畦幅70cm、株間10cm、施肥は78年と同じ、1区1.2a、2区制、前作は二条大麦で刈取りは6月12日、調査は10月12日（収穫期）にぬきとって前年同様実施した。
(2) 結果および考察
1978年に行なった結果を第3図に示した。害虫類が全県的に多発し、試験圃場でも早期からア
プラムシ類が発生し、イチモンジカムシ・アオクサカムシは果樹成長期が短く、無散布区では植立状態となって健全粒はほとんど見られなかった。

多発条件下でMEPおよびMPP粉剤を開花期から子実肥大期（7月27日～9月3日）に散布した結果、MEP粉剤の4回散布区で63%の健全粒率を示したが、2回散布区は40%で8月14日に散布した4回散布区に比して防除効果が劣った。他の散布区で被害粒の発生が多く、散布時期が直接的に影響を及ぼすもので、子実肥大期以後の散布とされる従来の散布時期がもられた。散布時期が一般的に早かったこと、および子実害虫の後期多発が防除効果を低めた原因と思われる。

1979年の結果は第4図に示した。

78年に比較してシロイチモジマダラメガの発生は多かったが、カムシ類は少なく、健全粒率も無散布区で約45%を示した。

各散布区の防除効果は、MEP乳剤の8月18日から9月6日までの期間の4回散布に比較して、同じ4回散布でも8月21日～9月18日の後期に散布時期を設定した区で被害粒の発生は少なかった。また8月18日から9月18日の5回散布区と8月21日から9月18日の3回散布は被害粒率もほぼ同等でときに9月18日の生育後期に散布した区は被災が少なく有効であった。MEP粉剤およびMEP+チオフォネートメチル混合粉剤、前者に比して防除効果が劣った。これは9月18日の散布を行なわなかったためと思われる。

1980年の結果は第5図に示した。

前年の試験結果から生育後期の薬剤散布散布が被害粒を少なくしたことから散布回数を少なくする目的で、子実が肥大する生育後期を重点に散布を実施した。圃場内における害虫の発生は、カムシ類が前年とはほぼ同等、シロイチモジマダラメガおよびサヤムシ類は少発生であっ

MEP乳剤の生育前期3回散布（8月14日～9月2日）に比較して、後期3回散布（8月24日～9月16日）は健全粒率が高く、子実害虫類に対する防除効果がすぐれていた。MEP+フエンパレート水和剤はMEP乳剤とほぼ同等の効果であった。以上の結果から散布回数が同じであれば散布を生育後期に実施したほうが防除効果が高いことがわかった。

2県北における子実害虫の防除効果

(1) 材料および方法

水戸市上河内町において、1979年は転作2年目の圃場

<table>
<thead>
<tr>
<th>薬剤名</th>
<th>散布日</th>
<th>健全粒率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEP乳剤 50%</td>
<td>8/18 21 29 9/6</td>
<td>50</td>
</tr>
<tr>
<td>MEP乳剤 × 1000</td>
<td>8/18 21 29 9/6</td>
<td>50</td>
</tr>
<tr>
<td>MEP粉剤 2%</td>
<td>8/18 21 29 9/6</td>
<td>50</td>
</tr>
<tr>
<td>MEP+チオフェートメチル</td>
<td>8/18 21 29 9/6</td>
<td>50</td>
</tr>
<tr>
<td>混合粉剤</td>
<td>8/18 21 29 9/6</td>
<td>50</td>
</tr>
<tr>
<td>無散布</td>
<td>8/18 21 29 9/6</td>
<td>50</td>
</tr>
<tr>
<td>転作ダイズを加害する害虫類の発生と防除</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>散布時期</td>
<td>8/14</td>
<td>24</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>MEP 50％ ×1000</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>MEP＋ファシバレート×1000</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>レレート×1000</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>無散布</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

第5図 転作ダイズにおける害虫の防除効果（県南・1980）
①殺虫剤にチオファネートメチル×1000混用 200ℓ/10a
A...発伸長中期
B...子実完大初期

品種	エンレイ
播種	6月20日
開花	8月2日
転作	初年目

に品種・革新1号を6月15日に播種した。畦幅60cm・株間10cm。施肥は成化（5・20・20）10ℓ/10a当り60kg、前作は二条大麦を栽培。1区1.2a。1区制。供試薬剤および散布時期は第6図のとおり。薬剤は多ホース噴霧にて10ℓ/10a当り4kg散布した。調査は10月30日に各区任意に10株をぬきとり、被害粒を虫害剤で区分して調べた。1980年は同地内の転作3年目の圃場に品種・エンレイを6月15日播種、畦幅60cm、株間15cm、施肥は慣行、1区1.2a。2区制で行なった。前作は二条大麦、供試薬剤および散布時期は第7図のとおりである。薬剤は動力噴霧機にて10ℓ/10a当り200ℓ散布した。調査は10月13日（収穫期）に前年と同様の方法で実施した。

(2) 結果および考察

1979年はササムシ類の発生が多く、子実完大期の荚の食害によるシミ粒の被害が目立った。

防除効果は第6図に示したとおりMEP粉剤の3回散布（8月21日〜9月19日）がもっとも高く、次いで1回散布（9月19日）・2回散布の順であった。被害粒はいずれもササムシ類によるシミ粒で、カメシ類、その他の害虫による被害は少なかった。

1980年の結果は第7図に示した。

試験圃場は前年に比べてカメシ類の発生が多く、シロイチモグラメイガとササムシ類は少発生であった。

MEP乳剤およびMEP＋フェンバレート水和剤の防除効果は各剤ともに3回散布（8月22日〜9月11日）で健全粒率が95％高く、2回散布（8月22日〜9月1日）ではやや劣った。

以上のようにササムシ類の発生が多くあった1979年は、3回散布で健全粒率は高かったが、後期1回散布でも被害粒の発生を少なくしたことから、後期散布の効果が有効と思われる。1980年についても散布時期を後期に行なった3回散布でも健全粒率が高いことから、県北においても県南と同様に生育後期の散布が有効であった。

3 褐斑粒（ウィルス）の防除試験

ダイズに褐斑粒（ウィルス）が発生すると収量および品質低下となり、種子として使用不能となるので県南の多発圃場で試験を行なった。

(1) 材料および方法

1978年、新治郡新治村田園荘の転作2年目の圃場に品種・農林2号を6月12日播種して行なった。畦幅60cm、株間10cm。施肥は成化（5・20・20）10ℓ/10a当り60kg、1区20㎡1区制、供試薬剤および処理方法は第3表のとおり。ムシコンマルチは播種直前にマルチした。調査は10月5日（収穫期）に各区から任意に10株をぬきとり褐斑粒の発生を調べた。

(2) 結果および考察

試験圃場では7月上旬からアブラムシ類の発生が多く、無散布区の生育は萎縮症状となった。

調査結果は第3表に示した。

エチルオメトン乳剤を播種に10ℓ/10a当り6kg散布し、薄く敷いて播種した区で防除効果は高く、ムシコンマルチ（白黒ストライプ入り）区では劣った。エチルオメトン

---45---
第6図 転作ダイズにおける害虫の防除効果（県北・1979）

<table>
<thead>
<tr>
<th>殺虫剤名</th>
<th>散布日</th>
<th>健全粒率</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEP粉剤</td>
<td>8/21 9/9 19</td>
<td>50 100</td>
</tr>
<tr>
<td>2％</td>
<td>○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>無散布</td>
<td>○ ○ ○</td>
<td></td>
</tr>
</tbody>
</table>

第7図 転作ダイズにおける害虫の防除効果（県北・1980）

<table>
<thead>
<tr>
<th>殺虫剤名</th>
<th>散布日</th>
<th>健全粒率</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEP</td>
<td>8/22 9/1 11</td>
<td>50 100</td>
</tr>
<tr>
<td>×1000</td>
<td>○ ○</td>
<td></td>
</tr>
<tr>
<td>メンシティブレレータ</td>
<td>○ ○</td>
<td></td>
</tr>
<tr>
<td>トート×1000</td>
<td>○ ○</td>
<td></td>
</tr>
<tr>
<td>無散布</td>
<td>○ ○</td>
<td></td>
</tr>
</tbody>
</table>

第3表 ウイルスによる褐斑粒の発生防止効果（1978）

<table>
<thead>
<tr>
<th>処理方法</th>
<th>ウイルス（褐斑粒率）</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>エチルテオモトン粒剤</td>
<td>13.6％</td>
<td>子実害虫防除期</td>
</tr>
<tr>
<td>播溝6K/10a</td>
<td></td>
<td>MPP2％分散</td>
</tr>
<tr>
<td>ムシコンマルチ</td>
<td>3.67％</td>
<td>8/4・23・9/3に</td>
</tr>
<tr>
<td>（ストライプ入り）</td>
<td></td>
<td>4K/10a散布</td>
</tr>
<tr>
<td>無処理</td>
<td>50.2</td>
<td></td>
</tr>
</tbody>
</table>

品種 農林3号、播種6月12日、開花7月27日。

メトロン剤の播溝散布は実用性が高いと思われる。

4 殺菌・殺虫剤混用による病害虫の同時防除試験
病害虫の多発するダイズでは、病気と害虫の個別防除では散布回数の増加となる。紫斑病と子実害虫の同時防除について試験を行なった。

（1）材料および方法
1981年、水戸市上国井町の転作3年目の圃場に品種・エンレイを6月30日に播種、畦幅60cm、株間15cm。施薬は現地慣行、供試薬剤および散布時期、量は第8図に示したとおりである。1区1a、2区制、散布剤は殺菌剤チオフェナートメチル水和剤を、殺虫剤MEP乳剤を各1000倍液となるよう混和し、-ext長期期から子実肥大期に動力噴霧機にて10a当り200dl散布した。調査は10月10日（収穫期）に各区より任意に10株をめり取り被害粒の発生を調べた。

（2）結果および考察
調査結果は第8図に示した。

IV 転作ダイズの害虫類に対する薬剤散布法試験

病害虫に対する薬剤の散布時期は、転作ダイズの茎葉が繁茂する8月から9月になることから、効率的な散布法を検討した。

1 材料および方法
1979年、水戸市上国井町の農試圃場内の転作ダイズを対象に試験を行なった。品種は革新1号、畦幅60cm、株間10cm。施薬は10a当りN＝3kg、P＝12kg、K＝12kgとし1区1.5aから5区15a、供試薬剤および散布機（噴頭）時期は第4表のとおりである。調査は10月23日（収穫期）に散布距離別に各区10株を任意にぬきとり、虫害別に被害粒の発生を調べた。

2 結果および考察
試験の結果は第5表に示すとおりであった。
第8図 転作ダイズにおける同時防除の効果（県北・1981）

<table>
<thead>
<tr>
<th>8/23</th>
<th>9/6</th>
<th>9/19</th>
<th>健全粒率</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

EP 50％

×1000

MEP・フェンバ

レイ葉×1000

無散布

<table>
<thead>
<tr>
<th>品種</th>
<th>播種</th>
<th>開花</th>
<th>転作</th>
</tr>
</thead>
<tbody>
<tr>
<td>エンレイ</td>
<td>6月30日</td>
<td>8月9日</td>
<td>3年目</td>
</tr>
</tbody>
</table>

第4表 各種噴頭による薬剤散布法

<table>
<thead>
<tr>
<th>区名</th>
<th>散布方法</th>
<th>時期</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Y型</td>
<td>粉剤：MEP 4kg / 10a 株間を斜めに左右に散布</td>
<td></td>
</tr>
<tr>
<td>2. BU</td>
<td>粉剤：MEP 4kg / 10a 疣中を引き</td>
<td></td>
</tr>
<tr>
<td>3. T型</td>
<td>粉剤：MEP 4kg / 10a 葉上より散布</td>
<td></td>
</tr>
<tr>
<td>4. 多口</td>
<td>粉剤：MEP 4kg / 10a 帆 20m</td>
<td></td>
</tr>
<tr>
<td>5. 鉄砲</td>
<td>動噴：MEP×1000液 200ℓ / 10a 帆 5m</td>
<td></td>
</tr>
</tbody>
</table>

第5表 噴頭の種類による防除効果（1979）

<table>
<thead>
<tr>
<th>機種</th>
<th>噴頭</th>
<th>差数</th>
<th>総粒数</th>
<th>健全粒数</th>
<th>同率</th>
<th>カ</th>
<th>メ</th>
<th>ム</th>
<th>シ</th>
<th>被害率</th>
<th>被害粒率(%)</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y型(1)</td>
<td>中央</td>
<td>57.0</td>
<td>651</td>
<td>577</td>
<td>88.6</td>
<td>5</td>
<td>5</td>
<td>1.7</td>
<td>0</td>
<td>0.1</td>
<td>5.3</td>
<td>27</td>
</tr>
<tr>
<td>3号</td>
<td>43.0</td>
<td>262</td>
<td>463</td>
<td>73.6</td>
<td>7</td>
<td>16</td>
<td>3.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.1</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>7号</td>
<td>45.0</td>
<td>758</td>
<td>674</td>
<td>88.9</td>
<td>6</td>
<td>8</td>
<td>1.9</td>
<td>0.3</td>
<td>0.5</td>
<td>6.5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>10号</td>
<td>61.5</td>
<td>731</td>
<td>597</td>
<td>81.7</td>
<td>4</td>
<td>2</td>
<td>5.4</td>
<td>0.9</td>
<td>1.4</td>
<td>8.4</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>14号</td>
<td>56.5</td>
<td>734</td>
<td>600</td>
<td>81.7</td>
<td>7</td>
<td>5</td>
<td>1.6</td>
<td>1.0</td>
<td>2.2</td>
<td>11.5</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Y型(2)</td>
<td>中央</td>
<td>55.0</td>
<td>789</td>
<td>693</td>
<td>87.8</td>
<td>9</td>
<td>12</td>
<td>2.4</td>
<td>0.4</td>
<td>0.4</td>
<td>2.5</td>
<td>49</td>
</tr>
<tr>
<td>3号</td>
<td>50.5</td>
<td>748</td>
<td>662</td>
<td>88.5</td>
<td>1</td>
<td>5</td>
<td>0.8</td>
<td>1.6</td>
<td>0.4</td>
<td>2.0</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>7号</td>
<td>77.5</td>
<td>901</td>
<td>673</td>
<td>74.7</td>
<td>14</td>
<td>11</td>
<td>2.8</td>
<td>1.2</td>
<td>1.8</td>
<td>16.0</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>多口</td>
<td>中央</td>
<td>52.0</td>
<td>877</td>
<td>751</td>
<td>85.6</td>
<td>7</td>
<td>17</td>
<td>2.7</td>
<td>0.2</td>
<td>0.2</td>
<td>6.8</td>
<td>38</td>
</tr>
<tr>
<td>T型</td>
<td>中央</td>
<td>44.0</td>
<td>724</td>
<td>596</td>
<td>82.3</td>
<td>7</td>
<td>15</td>
<td>3.0</td>
<td>1.2</td>
<td>0.9</td>
<td>8.4</td>
<td>29</td>
</tr>
<tr>
<td>鉄砲</td>
<td>63.0</td>
<td>891</td>
<td>802</td>
<td>90.0</td>
<td>4</td>
<td>5</td>
<td>1.0</td>
<td>0.5</td>
<td>0.4</td>
<td>3.4</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

注1 A...吸汁疲労がわずかに見られる。B...粒変形又は板粒
注2 Y型1)...スロットレバー 7/7 (7400 rpm)、Y型2)...同 3/7 (6600 rpm)
害虫の発生はサヤムシ類が多く、シロイチモジマダラメイガ、カメムシ類とも少なかった。

各噴頭別の防除効果は粉剤散布を行ったY型噴頭区では散布地点から左右に14畑（約5m）、T型噴頭では圧頭（5m）、BU噴頭は左右に8畑（約3m）以内で高く、散布巾を広げると効果はやや劣った。多ホース噴頭区は前者に比して被害粒の発生がやや多くなる傾向が認められたが、散布時間が日中で葉上散布となるため粉剤の飛散が多く薬への付着が少なくなったためと考えられる。液剤散布を行なった鉄砲噴頭区では防除効果はきわめて高かった。

以上の結果から株元に噴頭を突き入れて散布するY型噴頭とT型噴頭の散布幅は5m、BU噴頭では約3mであった。なおBU噴頭を使用する場合は薬液の上部飛散を防ぐと散布幅は拡大し、多ホース噴頭は薬剤の飛散（風や上昇気流）の少ない方向を選んで散布することが必要と思われる。

V 総合考察

1 害虫類の発生と被害

県内の転作ダイズ栽培圃場に生息が確認された害虫類は10数種で、加害部位および加害時期を総括すると第9図のようにになった。

害虫類の発生および被害から県内における主要な加害種を見ると、カメムシ類、シロイチモジマダラメイガ、サヤタマバエ、サヤムシ類など子実害虫であったが、

<table>
<thead>
<tr>
<th>害虫名</th>
<th>主な加害部位</th>
<th>加害時期</th>
</tr>
</thead>
<tbody>
<tr>
<td>クネバエ</td>
<td>種子</td>
<td>6月 7月 8月 9月</td>
</tr>
<tr>
<td>アブラムシ類</td>
<td>葉・生長点</td>
<td></td>
</tr>
<tr>
<td>マメハンミョウ</td>
<td>葉</td>
<td></td>
</tr>
<tr>
<td>マメドクガ</td>
<td>葉</td>
<td></td>
</tr>
<tr>
<td>ハスモノヨトウ</td>
<td>葉</td>
<td></td>
</tr>
<tr>
<td>ミツモンキンウバ</td>
<td>葉</td>
<td></td>
</tr>
<tr>
<td>フタスジヒメハムシ</td>
<td>花、幼芽</td>
<td></td>
</tr>
<tr>
<td>コガネムシ類</td>
<td>葉</td>
<td></td>
</tr>
<tr>
<td>サヤタマバエ</td>
<td>幼荚・粒</td>
<td></td>
</tr>
<tr>
<td>カメムシ類</td>
<td>幼荚・粒</td>
<td></td>
</tr>
<tr>
<td>シロイチモジマダラメイガ</td>
<td>葉・粒</td>
<td></td>
</tr>
<tr>
<td>マメシシイガ</td>
<td>葉・粒</td>
<td></td>
</tr>
<tr>
<td>サヤムシ類</td>
<td>葉・葉・粒</td>
<td></td>
</tr>
</tbody>
</table>

第9図 転作ダイズの主要加害種と加害時期

-48-
転作ダイズを加害する害虫類の発生と防除

各地域ともカメンム類とシロイチモジマガラメイガの被害が主体であった。

ダイズの開花期から子実肥大期に発生するカメンム類は、県南、県西地域はイチモンジカメンムの密度が高く、県北ではアオガサカメンムの生息が他種に比して著しく示したが、年次や地域によって優先種が異なるようである。生息密度においては県北に比べて県南地域で高く、被害も他害虫に比較して常に多発するなどカメンム類は転作ダイズの重要害虫であった。とくにマメ科植物を好むイチモンジカメンム(2)(3)の生息が多い県南地域では本種の発生に注意が必要であろう。シロイチモジマガラメイガは県北および県南地域とも発生時期は大同一であったが、各年次とも県北に比べて県南は多発し、被害粒の発生がカメンムに次いで多かった。サヤマバエについては早稲ダイズで被害害の発生が多発傾向を示したが、県内の転作ダイズ（6月中旬播種）では被害が少なかった。本種による被害は7月中旬から8月中旬に開花するダイズでは少ない(2)ことから、本県の転作ダイズでは少ないことが考えられる。

サヤマガ類にはMatsumuraees phaseoliとM. falcataの2種(2)が知られているが、本県に生息する種については不明である。県内では「79年に多発生が認められ、早期（7月上旬）から発生したため被害が見られ、シミ粒の発生が多かった。他の調査年は少発生であったことから、本種は年次による発生変動が大きいものと思われる。次に、従来から稲作ダイズで多発したヒメコガネ(1)は転作ダイズでは発生を示し、被害はほとんど認められなかった。成虫は乾燥乾燥排気の土壌に多く産卵する(1)など畑地を好むことから、沖縄地のダイズ畑では発生、被害とも少ないことが考えられる。

また西南暖地に多発するハスボンヨトウ(3)は、本県の場合発生時期が8月下旬から9月とおもろく、発生量も例外少ないことから被害も少なかった。その他の害虫類ではアブラムシ類による褐色粒の発生、マメハンミョウの局地的発生などがうかげられるよう。

このように県内の転作ダイズではカメンム類とシロイチモジマガラメイガの被害が主体となり、県南地域ではカメンム類によるものが多かった。県北では両種の被害が同程度で、前者に比して少なかった。さらに県北地域では害虫類の発生および被害ともやめて少なく、これがダイズ栽培を定着している要因である。県北に比較して冬期間が暖かい県南は、1月の平均気温が2℃に南の第3地域(4)に位置することから、各種害虫類の越冬および生息に適し、これが発生を多くしている原因と考えられる。

2薬剤の防除効果試験

1979年、県南（害虫多発地）の転作ダイズ栽培圃場で、開花期から子実肥大初期にMEP剤を10日間隔で4回散布を行なった結果、生育後期の被害によって防除効果は劣った。これに対し80年と81年の酢酸長期から子実肥大期に散布したところ両年とも被害を少なくした。害実虫の発生が多い本県の転作ダイズでは、生育後期の薬剤散布が有効と思われる。また散布回数についても酢酸長期から3~4回散布で十分と考える。県北（害虫少発地）においても散布時期は県南とは同様とみなされが、害虫類の発生が少ないため散布回数は2~3回で有効と思われる。なお草薬小粒状物はさらに散布回数を減じても効果のあることが観察された。

乳剤と粉剤による防除効果の差異は認められなかった。薬剤の散布による防除効果の有効性を認めた。MEPによるウイルス（褐斑粒）の散布は、エチルオオントロシ薬剤を播種に10kg当たり6kg散布すると高い防除効果のあることを認めた。

殺菌、殺虫剤の混用散布による紫斑病と子実害虫類の同時防除は、酢酸長期初期又は中期にチオファネットメチル水和剤と各種殺虫剤を混用し、1回散布することで紫斑病に対する効果は高く有効な結果を得た。またMEP＋チオファネットメチル粉剤の散布も前者同様に効果は認められる。

3薬剤の散布法試験

茎葉が繁茂した転作ダイズの防除は薬剤が畦内に飛散しにくいことから、各種の散布噴霧を用いた散布を実施した。Y型（畦間を引きながら散布）とT型（葉上散布）は散布巾が約5m、BU噴霧（畦間を引きながら散布）の場合は約3mが有効であった。倒伏したダイズはY型およびBU型喷霧とも散布できず、T型喷霧でも防除効果
は低下する。また多口ホース噴霧（30 cm）による散布では、中央がわん曲し飛散が大きいので、風など十分注意して散布することが重要と思われた。

VI 摘要

1. 県内の転作ダイズに発生した害虫の種類および被害実態と防除法について調査および試験を実施した。
2. 転作ダイズの主要被害種はカムシ類、シロイチモジマダラメイガ、サヤタマバエ、サヤシガ類で、発生および被害は県南・県西が他地域に比して多く、県北の山間地はきわめて少なかった。
3. 県北ではアオクサカメシの生息が他種に比して優位を示し、県南・県西地域はイチモンジカメシが多く地域によって優先種が異なっていた。
4. 県南はカムシ類による被害が、他に比して多く、県北ではカムシとシロイチモジマダラメイガの被害はほぼ同程度であった。各年次とも県南地域で被害は多発した。
5. サヤシガ類とアブラムシ類の発生は年次によって差が大きく、ヒメゴガネ、ハスモンヨトウは本県の転作ダイズでは少発生であった。
6. 防除効果は、変種長期から子実肥大期に県南地域は3〜4回、県北では2〜3回散布などダイズの生育後期散布が有効であった。紫斑病との同時防除は、変種長期初期又は中期の散布で効果は高かった。
7. アブラムシによるウイルス（褐斑粒）はエチルチオメトン粒剤の播種散布が防除効果が高い。
8. 各種の散布噴頭による有効散布幅を検討した。

引用文献

1) 田村市太郎：（1952）大豆の虫害に関する生態学的研究，関東々山農業試験場 1～151
2) 日本植物防疫協会：（1979）ダイズ病害虫の手引 1～211
3) 小林 尚：（1979）ダイズ害虫の現状と問題点，植物防疫 33-9
茨城県産水稲玄米の化学成分とその変動要因に関する研究

狩野幹夫・岡野博文

水稲玄米のタンパク質・脂質および灰分含量について本県の実態を明らかにすると同時に、その成分の変動する要因を究明した。さらに、タンパク質含量と炊飯特性の関係についても検討した。

その結果、県内418試料から得られたコシヒカリ玄米のタンパク質含量は平均7.89％であった。これは全国うち玄米の8.76％（日本標準成分表）よりおよそ10％低かった。その他の品種ではトドリキセロ：8.89％、日本晴：8.21％であった。

タンパク質含量に及ぼす変動要因は、①品種の早晩性があり、主に品種の特性および登熟発育に支配されている。また、②追肥方法として穂摘期以降の追肥は穂肥に比べ、確実にタンパク質含量を増加させた。玄米形質では整粒に比べ青米や芯白粒が高タンパク質含量の傾向を認めた。③泥炭土壌はグラム土壌より高含量であったが、出穂期以降の排水処理によって低含量化の可能性が示唆された。

脂質および灰分含量の変動は土壌・窒素施肥時期による影響は少なく、登熟発育に影響されて後述されることと推定した。

タンパク質含量と炊飯特性の関係は、タンパク質含量が高いと粒が劣り、低含量では粒がまさる傾向がみられた。

目　次

I 緒　言 ... 1
II 茨城県産コシヒカリ玄米のタンパク質含量 …… 2
III 品種および土壌型の違いがタンパク質含量
に及ぼす影響 .. 10
IV 栽培時期・品種の違いが玄米の化学成分お
よび脂肪酸組成に及ぼす影響 14
V 土壌型と穂肥施用時期がコシヒカリ玄米の
化学成分と炊飯特性に及ぼす影響 18
VI 泥炭土壌における水稲の後期水管理が玄米
の化学成分と炊飯特性に及ぼす影響 24
VII 総　括 ... 28
VIII 引用文献 ... 30

I 緒　言

玄米の形態的・物理的品質の変動要因に関しては多くの研究成果があり、栽培環境ならびに収穫・乾燥等の品質・食味に及ぼす影響が究明されている。

茨城県の県南部地域は早場米地帯として知られ、早生品種の作付が最も多い地域であるが、昭和40年代後半から当地域の玄米は千粒重が小さく、米粒の充実が悪いことから検査等級等下位等級の割合が多いなどの問題を生じている。さらに、米は我国の主食として国民のカリテー原ならびにタンパク質資源として重要な位置を占み、品質・食味の向上はますます重視されている。

しかし、米の品質は品種や産地等による良否の判定が必ずしも明らかでなく、今後これらによる品質差がより多く問題になるように思われる。また、本県における品種・土壌ならびに水管理等の要因を含めた品質の実態および改善の試験研究も極めて少ない。従って、品質、とりわけ本県産米の化学成分の実態とその変動要因を明らかにすることは品質向上のため極めて重要と考えられる。

筆者らは1975年以降、水稲の品質改善に関する調査を
進めてきたが，1983年に多数の試料について分析する機会に恵まれ，本県産の水稲玄米を用いてタンパク質，脂質ならびに灰分含量について検討し，さらに炊飯特性についても検討を加えたので報告する。

Ⅱ 茨城県産コシヒカリ玄米のタンパク質含量

本県に広く栽培されているコシヒカリの玄米中タンパク質含量の実態を明らかにし，地域・生産地の違いや千粒重および整粒歩合などの玄米形質との関係について検討した。

1 試験方法

1) 試 料

試料は県内26カ所の農業改良普及所および4カ所の害虫防除所管内の1980年産コシヒカリ・418試料を用いた。さらに，年次間差をみるため1979年産の県北地域における96試料についても検討した。

2) 分析方法

玄米試料は30メッシに粉碎したのち，マクロ・ケルダール法により全窒素を定量し，これにタンパク質換算係数5.95を乗じてタンパク質含量とした。また，乾物換算のための水分測定は，135℃・1時間乾燥法によった。

2 結果および考察

1) 茨城県産米のタンパク質含量の実態

(1) 玄米のタンパク質含量と地域性

第1表 茨城県におけるコシヒカリの玄米中タンパク質含量

<table>
<thead>
<tr>
<th>地域</th>
<th>最低値</th>
<th>最高値</th>
<th>平均値</th>
<th>標準偏差</th>
<th>変異係数(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>県北</td>
<td>6.72</td>
<td>10.00</td>
<td>7.95</td>
<td>0.60</td>
<td>7.5</td>
</tr>
<tr>
<td>県南</td>
<td>6.68</td>
<td>9.88</td>
<td>7.86</td>
<td>0.55</td>
<td>7.0</td>
</tr>
<tr>
<td>県西</td>
<td>6.40</td>
<td>9.50</td>
<td>7.78</td>
<td>0.58</td>
<td>7.5</td>
</tr>
<tr>
<td>鹿行</td>
<td>7.00</td>
<td>9.63</td>
<td>7.96</td>
<td>0.54</td>
<td>6.8</td>
</tr>
<tr>
<td>全体</td>
<td>6.40</td>
<td>10.00</td>
<td>7.89</td>
<td>0.57</td>
<td>7.2</td>
</tr>
</tbody>
</table>

分散分析表

<table>
<thead>
<tr>
<th>要 因</th>
<th>自由度</th>
<th>平方和</th>
<th>不偏分散</th>
<th>分散比</th>
</tr>
</thead>
<tbody>
<tr>
<td>主効果</td>
<td>3</td>
<td>1.42059</td>
<td>0.4735</td>
<td>1.46 NS</td>
</tr>
<tr>
<td>誤 差</td>
<td>417</td>
<td>135.49488</td>
<td>0.3249</td>
<td></td>
</tr>
</tbody>
</table>

F(3/417) 5% : 2.62 1% : 3.83

第1図 1980年度産コシヒカリ玄米の各地域別のタンパク質含量分布
茨城県産水稲玄米の化学成分とその変動要因に関する研究

本県産コシヒカリ玄米の乾物中百分率におけるタンパク質含量の範囲および平均値について第1表に示した。タンパク質含量の最低値：6.40％に対する最高値：10.00％の指数は156を示し、県全体の平均値は7.89％であった。このことは、全国の水稲における玄米の基準値となり得る日本食品標準成分表のタンパク質含量：8.76％（乾物換算値）と比較すると11％の低値を示した。

県全体とそれを行政区区分にしたがって4地域に分けた県北・県南・県西ならびに鹿行地域におけるタンパク質含量の頻度分布を第1図に示した。県全体と県西地域は低価分布のパターンがみられたが、県北・県南ならびに鹿行地域は正規分布を示す非対称の分布を示した。すなわち、県北および鹿行地域はタンパク質含量の低い方へ、県南地域は高い方へそれぞれ尾を引くような分布を示した。これら4地域間のタンパク質含量の平均値に差があるか否かを一元配置の分散分析を行なった結果、有意差は認められなかった。

各市町村単位の乾物中百分率におけるタンパク質含量について、その範囲および平均値を第2表に示した。

<table>
<thead>
<tr>
<th>生 産 地</th>
<th>最低値</th>
<th>最大値</th>
<th>平均値</th>
<th>対県平均値</th>
<th>標準偏差</th>
<th>変異係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>県北</td>
<td>小川町</td>
<td>7.37</td>
<td>9.31</td>
<td>8.35</td>
<td>106</td>
<td>0.75</td>
</tr>
<tr>
<td>美野里町</td>
<td>7.72</td>
<td>8.47</td>
<td>8.10</td>
<td>103</td>
<td>0.39</td>
<td>4.8</td>
</tr>
<tr>
<td>内原町</td>
<td>8.43</td>
<td>7.81</td>
<td>99</td>
<td>0.38</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>茨城</td>
<td>路頭町</td>
<td>7.49</td>
<td>8.54</td>
<td>8.07</td>
<td>102</td>
<td>0.41</td>
</tr>
<tr>
<td>岩間町</td>
<td>6.89</td>
<td>8.60</td>
<td>7.65</td>
<td>97</td>
<td>0.71</td>
<td>9.3</td>
</tr>
<tr>
<td>水戸市</td>
<td>6.77</td>
<td>9.45</td>
<td>7.91</td>
<td>100</td>
<td>0.70</td>
<td>8.8</td>
</tr>
<tr>
<td>大子町</td>
<td>7.27</td>
<td>8.45</td>
<td>7.92</td>
<td>100</td>
<td>0.40</td>
<td>5.1</td>
</tr>
<tr>
<td>山方町</td>
<td>7.53</td>
<td>8.49</td>
<td>8.01</td>
<td>102</td>
<td>0.47</td>
<td>5.9</td>
</tr>
<tr>
<td>美和村</td>
<td>7.34</td>
<td>7.99</td>
<td>7.67</td>
<td>97</td>
<td>0.46</td>
<td>6.0</td>
</tr>
<tr>
<td>北茨城</td>
<td>7.61</td>
<td>9.68</td>
<td>8.09</td>
<td>103</td>
<td>0.54</td>
<td>6.7</td>
</tr>
<tr>
<td>高萩市</td>
<td>8.72</td>
<td>10.00</td>
<td>9.36</td>
<td>119</td>
<td>0.91</td>
<td>9.7</td>
</tr>
<tr>
<td>日立市</td>
<td>7.43</td>
<td>8.95</td>
<td>8.43</td>
<td>107</td>
<td>0.60</td>
<td>7.1</td>
</tr>
<tr>
<td>十王町</td>
<td>7.58</td>
<td>9.05</td>
<td>8.21</td>
<td>104</td>
<td>0.57</td>
<td>6.9</td>
</tr>
<tr>
<td>金砂村</td>
<td>6.73</td>
<td>8.10</td>
<td>7.28</td>
<td>92</td>
<td>0.64</td>
<td>8.8</td>
</tr>
<tr>
<td>常陸大宮市</td>
<td>7.16</td>
<td>8.17</td>
<td>7.65</td>
<td>97</td>
<td>0.45</td>
<td>5.9</td>
</tr>
<tr>
<td>桜市</td>
<td>6.72</td>
<td>7.37</td>
<td>7.00</td>
<td>89</td>
<td>0.33</td>
<td>4.7</td>
</tr>
<tr>
<td>常陸北鎮</td>
<td>7.13</td>
<td>7.99</td>
<td>7.58</td>
<td>96</td>
<td>0.38</td>
<td>4.6</td>
</tr>
<tr>
<td>笹間市</td>
<td>7.37</td>
<td>7.38</td>
<td>7.38</td>
<td>94</td>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td>東海村</td>
<td>7.88</td>
<td>8.32</td>
<td>8.13</td>
<td>103</td>
<td>0.16</td>
<td>2.0</td>
</tr>
<tr>
<td>常陸大宮市</td>
<td>7.35</td>
<td>8.32</td>
<td>7.74</td>
<td>98</td>
<td>0.36</td>
<td>4.7</td>
</tr>
<tr>
<td>邪若村</td>
<td>7.79</td>
<td>8.92</td>
<td>8.41</td>
<td>107</td>
<td>0.41</td>
<td>4.9</td>
</tr>
<tr>
<td>勝田村</td>
<td>7.31</td>
<td>8.31</td>
<td>7.95</td>
<td>101</td>
<td>0.44</td>
<td>5.5</td>
</tr>
<tr>
<td>邪若村</td>
<td>7.26</td>
<td>8.16</td>
<td>7.73</td>
<td>98</td>
<td>0.37</td>
<td>4.8</td>
</tr>
<tr>
<td>瓜連町</td>
<td>7.00</td>
<td>8.87</td>
<td>7.73</td>
<td>100</td>
<td>1.00</td>
<td>12.9</td>
</tr>
<tr>
<td>県南</td>
<td>石岡市</td>
<td>7.17</td>
<td>8.94</td>
<td>7.72</td>
<td>98</td>
<td>0.42</td>
</tr>
<tr>
<td>守谷町</td>
<td>7.18</td>
<td>8.65</td>
<td>7.80</td>
<td>99</td>
<td>0.39</td>
<td>5.0</td>
</tr>
<tr>
<td>大稲町</td>
<td>7.34</td>
<td>8.27</td>
<td>7.91</td>
<td>100</td>
<td>0.37</td>
<td>4.7</td>
</tr>
<tr>
<td>竜ケ崎市</td>
<td>7.29</td>
<td>8.29</td>
<td>7.87</td>
<td>100</td>
<td>0.30</td>
<td>3.8</td>
</tr>
<tr>
<td>牛久町</td>
<td>8.42</td>
<td>9.61</td>
<td>8.94</td>
<td>113</td>
<td>0.52</td>
<td>5.8</td>
</tr>
<tr>
<td>出島村</td>
<td>8.23</td>
<td>8.25</td>
<td>8.24</td>
<td>104</td>
<td>0.01</td>
<td>0.1</td>
</tr>
</tbody>
</table>

分散分析表

<table>
<thead>
<tr>
<th>要 因</th>
<th>平 方 和</th>
<th>自 由 度</th>
<th>不 偏 分 散</th>
<th>分 散 比</th>
</tr>
</thead>
<tbody>
<tr>
<td>主 効 果</td>
<td>40.1696</td>
<td>58</td>
<td>0.6926</td>
<td>2.59**</td>
</tr>
<tr>
<td>差</td>
<td>96.7459</td>
<td>362</td>
<td>0.2673</td>
<td></td>
</tr>
<tr>
<td>合 計</td>
<td>136.9155</td>
<td>420</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F(58/362) 5％：1.55 1％：1.37

—53—
各市町村間の平均値において、いずれも有意水準 : 1%nもしくは5%で有意差が認められた。すなわち、各市町村の比較でタンパク質含量指数が県平均より105以上
の高含量のみられた市町村は県北：高萩・119，日立・107，那珂湊・107，小川・106，県南：牛久・113，
栃崎・107，桜・107，谷和原・106，鹿行：麻生・108，
波崎・106，神栖・牛嶋は共に105であった。一方、低
タンパク質含量の市町村は県北：桂・89，金砂郷・92，
笠間・94，県南：美浦・95，鹿行：大洋・96，県西：
石下・93などであった。

市町村の中で比較的試料数の多かった藤代町と河内村
について生産集落別にタンパク質含量を乾物中百分率と
して第3表に示した。

第3表 同一集落内におけるタンパク質含量
（乾物中％）

<table>
<thead>
<tr>
<th>地区名</th>
<th>最低値～最大値</th>
<th>平均値</th>
<th>標準値</th>
<th>偏差（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>藤代町大曲</td>
<td>6.68～7.48</td>
<td>7.13a</td>
<td>0.3298</td>
<td>4.6</td>
</tr>
<tr>
<td>鎌田</td>
<td>7.01～7.98</td>
<td>7.24a</td>
<td>0.4167</td>
<td>5.8</td>
</tr>
<tr>
<td>配松</td>
<td>6.93～8.21</td>
<td>7.51ab</td>
<td>0.3794</td>
<td>5.1</td>
</tr>
<tr>
<td>萩場</td>
<td>7.07～8.26</td>
<td>7.56ab</td>
<td>0.4046</td>
<td>5.4</td>
</tr>
<tr>
<td>毛有</td>
<td>7.78～8.36</td>
<td>7.97bc</td>
<td>0.2228</td>
<td>2.8</td>
</tr>
<tr>
<td>浦沼</td>
<td>7.63～9.42</td>
<td>8.52c</td>
<td>0.7699</td>
<td>8.9</td>
</tr>
<tr>
<td>河内村</td>
<td>7.46～9.29</td>
<td>8.06bc</td>
<td>0.7921</td>
<td>9.8</td>
</tr>
<tr>
<td>内野</td>
<td>7.66～8.41</td>
<td>8.15bc</td>
<td>0.4219</td>
<td>5.2</td>
</tr>
</tbody>
</table>

分散分析 : 1%水準有意

藤代町は県の平均値と比べタンパク質含量がやや低く、
河内村は県のほぼ平均レベルの地域だが、集落間にタン
パク質含量の有意差が認められた。すなわち、藤代町浦
沼は低含量のみられた同大曲と比べ119の高含量であり、
河内村内野・114，同生飯・113，藤代町毛有・112な
どであり、極めて狭い地域内においても変動がみられた。

（2）玄米のタンパク質含量を変動させる要因
栽培年次の違いがタンパク質含量に及ぼす影響を第2
図に示した。

両年のタンパク質含量の分布についてみると、1979年
産はほぼ対称型を示しているのに対し、1980年産は低い
方へ尾を引く分布パターンを示した。1979年産は1980

第2図 栽培年次とタンパク質含量の分布

年産に比べ最高値9.70%に対し10.00%、最低値6.39%の
に対し6.72%と下まわっているが、平均値は各7.86%、
7.95%で一元配置の分散分析の結果においても両年のタ
ンパク質含量に有意差は認められなかった。

このことについて、本佐は1)は同一品種であっても栽培
年によりタンパク質含量が異なることを報告している。
すなわち、登熟期の気温とタンパク質含量の関係は気温
の高い時に多くなるとし、登熟後期における（米粒の
胚乳組織の充実不良を原因とする米粒の大小15および未
熟粒の相互関係で増加するとしている。本調査における
両年のタンパク質含量に差が認められなかったこととし
て、登熟期間の気象条件、とくに気温が両年間明らか
の差がないことが要因と思われる。

次に調査点数も多く、栽培法が比較的類似していると
みなされる利根下流域における土壌間のタンパク質含量
の分布を第3図に示した。

泥炭土壌ではグライ土壌に比べ高含量の傾向を示した。
とに泥炭土壌で高含量を示したところは暗渠が未施工
か、または施工年次が浅く水管理のしにくいところであ
第3図 同一地域内における土壌と玄米タンパク質含量

10日頃までの実施肥はその傾向が顕著であった。実施肥は農家により1〜2回施用しており、その窒素量は平均0.34 kg/acreで、施肥を含めた場合は0.73 kg/acre程度であった。一方、基肥窒素量の多少とタンパク質含量との関係には一定の傾向がみられなかった。

2）タンパク質含量と玄米形質の関係

タンパク質含量と玄米形質間の相関関係を第4図に示した。

県南および県西地域の耕種概要の実態から、タンパク質含量と穂肥・実施肥の追肥時期との関係を第4表に示した。

第4表 茨城県産コシヒカリ玄米の形質とタンパク質含量

<table>
<thead>
<tr>
<th>植検種</th>
<th>稲種</th>
<th>千粒重</th>
<th>乳白皮</th>
<th>心白皮</th>
<th>乳白色</th>
<th>基白色</th>
<th>玄米</th>
<th>食味</th>
<th>うずら米</th>
<th>味性</th>
<th>色形</th>
<th>穗形</th>
<th>千粒重</th>
<th>形状</th>
<th>形状</th>
</tr>
</thead>
<tbody>
<tr>
<td>植検種</td>
<td>0.2579**</td>
<td>-0.4048**</td>
<td>0.1461**</td>
<td>0.1177**</td>
<td>0.0631</td>
<td>0.3166**</td>
<td>0.2568**</td>
<td>0.0489</td>
<td>0.0949</td>
<td>0.1535**</td>
<td>0.1365**</td>
<td>0.4364**</td>
<td>0.4032**</td>
<td>-0.4905**</td>
<td>0.1332**</td>
</tr>
<tr>
<td>稲種</td>
<td>-0.1614**</td>
<td>-0.1048**</td>
<td>-0.0729</td>
<td>-0.0347</td>
<td>-0.0497</td>
<td>-0.2048**</td>
<td>-0.1071</td>
<td>0.0365</td>
<td>-0.2207</td>
<td>-0.0975</td>
<td>0.1563**</td>
<td>0.1388**</td>
<td>-0.0202</td>
<td>0.0404</td>
<td>-0.0329</td>
</tr>
<tr>
<td>千粒重</td>
<td>0.0336</td>
<td>0.0241</td>
<td>0.0988</td>
<td>-0.2347**</td>
<td>-0.0395</td>
<td>-0.1068**</td>
<td>-0.0301</td>
<td>0.0551</td>
<td>-0.2369**</td>
<td>-0.4129**</td>
<td>-0.4023**</td>
<td>0.3270**</td>
<td>-0.0423**</td>
<td>0.0341**</td>
<td>-0.0292</td>
</tr>
<tr>
<td>乳白皮</td>
<td>0.1672</td>
<td>0.1277**</td>
<td>0.0435</td>
<td>0.0161</td>
<td>0.1061**</td>
<td>0.0865</td>
<td>0.0474</td>
<td>0.0225</td>
<td>-0.0168**</td>
<td>-0.0232**</td>
<td>-0.0324**</td>
<td>0.0215</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>心白皮</td>
<td>0.1821**</td>
<td>-0.0370</td>
<td>-0.0276</td>
<td>0.0370</td>
<td>0.0958</td>
<td>0.0350</td>
<td>0.0105</td>
<td>-0.1177**</td>
<td>-0.1062**</td>
<td>-0.2023**</td>
<td>-0.0321</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>乳白色</td>
<td>0.0564</td>
<td>0.1606**</td>
<td>0.7269**</td>
<td>-0.1177**</td>
<td>-0.0291</td>
<td>0.1025**</td>
<td>-0.0326</td>
<td>0.0333</td>
<td>-0.3148**</td>
<td>0.0716</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>基白色</td>
<td>-0.0349</td>
<td>0.1517**</td>
<td>0.1646**</td>
<td>0.0328</td>
<td>0.1502**</td>
<td>0.3959**</td>
<td>0.4606**</td>
<td>-0.3031**</td>
<td>-0.1169**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>玄米</td>
<td>-0.1069**</td>
<td>-0.1676**</td>
<td>0.0480</td>
<td>0.3662**</td>
<td>-0.0224</td>
<td>0.0496</td>
<td>-0.3247**</td>
<td>-0.0368**</td>
<td>0.0383</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>食味</td>
<td>0.1544**</td>
<td>0.0347</td>
<td>0.3662**</td>
<td>-0.0224</td>
<td>0.0496</td>
<td>-0.3247**</td>
<td>0.0383</td>
<td>0.0383</td>
<td>0.3662**</td>
<td>0.0383</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>うずら米</td>
<td>0.0460</td>
<td>0.2075**</td>
<td>0.0394</td>
<td>0.0187</td>
<td>-0.4115**</td>
<td>0.0381</td>
<td>0.0612</td>
<td>0.0307</td>
<td>-0.4601**</td>
<td>0.0311</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>味性</td>
<td>0.1204**</td>
<td>0.2057**</td>
<td>0.0213**</td>
<td>0.0187</td>
<td>-0.4601**</td>
<td>0.0311</td>
<td>0.0612</td>
<td>0.0307</td>
<td>-0.4601**</td>
<td>0.0311</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>色形</td>
<td>0.6903**</td>
<td>-0.3328**</td>
<td>0.0143</td>
<td>0.0299</td>
<td>-0.3687**</td>
<td>-0.0264</td>
<td>0.0143</td>
<td>0.0299</td>
<td>-0.3687**</td>
<td>-0.0264</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>穗形</td>
<td>-0.3739**</td>
<td>-0.0254</td>
<td>0.0143</td>
<td>0.0299</td>
<td>-0.3687**</td>
<td>-0.0264</td>
<td>0.0143</td>
<td>0.0299</td>
<td>-0.3687**</td>
<td>-0.0264</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*注: **は有意水準1%、5%をそれぞれ示す。
含量の関係は相関が認められなかった。完全粒の比率を示す整粒歩合では対相関がみられるものの有意な関係ではなかった。他、県西地域ではタンパク質含量と心白未熟粒との間に正相関、整粒歩合と負相関が認められた。

タンパク質含量と玄米形質の関係について、谷は容積重・千粒重・粒の大きさ・鈍度などと負の相関を認めている。これらはいずれも食味庁の検査規格において米の充実と関係がある。この点について、本調査では検査等級が上位にややかかったことに、前に述べたタンパク質含量を変動させる要因、土壌型・窒素の施用法などの統一ができなかったことに起因して不均ならなかったものと思われる。しかし、検査等級と負の相関がみられたことは正らしも認めているように、玄米のタンパク質含量は検査等級にかかわり影響するものといえよう。また、県西地域において明らかにしたタンパク質含量と心白未熟粒および整粒歩合の関係は、完全米に比べ破粉集積の悪い心白粒でタンパク質含量が高かったことは木戸らも認めていた。

次に、県内のコシヒカリ玄米418点について、タンパク質含量・千粒重・整粒歩合などに検査等級の特性値を要約し、いくつかのタイプに分類を試みて主成分分析を適用した。すなわち、まず始めにこの4特性値を2つの主成分に要約した。この2つの主成分によって、はじめの4特性値の中から情報の約71%を説明しうることがわかった。次に各主成分の意味についてみると、第1主成分Z1は千粒重・整粒歩合の係数が負で0.52～0.57とほぼ同じ重みをもっている。一方、検査等級およびタンパク質含量の係数は正でそれぞれ0.62～0.13であった。

したがって、千粒重および整粒歩合が劣る、検査等級が下位等級だとZ1が正で大きく、千粒重・整粒歩合が低まり、検査等級が上位だとZ1が負で大きくなることを示している。第2主成分Z2は各特性値の係数がすべて正でタンパク質含量は0.98、他は0.04～0.14の間であった。

したがって、そのいずれが大きくなってもZ3は大きくなるが、タンパク質含量が多くなるとZ2は正で大きくなることを示していた。
Ⅲ 品種および土壌型の違いが玄米
タンパク質含量に及ぼす影響
タンパク質含量に変動を及ぼすと思われる品種・土壌型の違いについて検討した。

１ 試験方法
1）試 料
品種とタンパク質含量の関係に関する試料は、水戸病害虫防除所が採取した1980年産のトドロキワセ、コシヒカリ、大空、日本晴の317試料を用いた。

品種および土壌型とタンパク質含量の関係の試料は、1983年に中粗粒土壌（竜ヶ崎試験地）と泥炭土壌（竜ヶ崎市大宮）で得られた試料を用いた。供試品種は水稲のうち：アキヒカリ、トドロキワセ、初星、トヨシキ、コシヒカリの6品種、水稲も2：ふ系133号、ヒメノモチ、ヒデノモチ、恵徳、信満篤3号、マンゲツモチの6品種・系統である。

耕種概要は5月6日から8日に栽培密度・22.2本/㎡とし、移植は1株5本の手植とした。施肥は両土壌とも基肥窒素0.6kg/aとし、穂肥は抽穗展開期にN、K₂Oそれぞれ0.3kg/aを施用した。

2）定量方法
試験Ⅰ－2に準じた。

２ 結果および考察
県北地域における品種別の玄米タンパク質含量およびタンパク質含量の分布を乾物中百分率として第5表、第7図にそれぞれ示した。

第5表 品種とタンパク質含量（乾物％）

<table>
<thead>
<tr>
<th>品 種</th>
<th>試 料</th>
<th>最 最</th>
<th>平 標 変</th>
<th>数 値 値 値 準差 異</th>
<th>数 値 値 値 準差 異</th>
<th>数 値 値 値 準差 異</th>
</tr>
</thead>
<tbody>
<tr>
<td>トドロキワセ</td>
<td>70</td>
<td>7.05</td>
<td>10.73</td>
<td>9.89 a</td>
<td>0.68</td>
<td>7.6</td>
</tr>
<tr>
<td>コシヒカリ</td>
<td>141</td>
<td>6.72</td>
<td>10.00</td>
<td>7.95 c</td>
<td>0.60</td>
<td>6.6</td>
</tr>
<tr>
<td>大 空</td>
<td>56</td>
<td>8.05</td>
<td>10.42</td>
<td>9.18 c</td>
<td>0.61</td>
<td>6.6</td>
</tr>
<tr>
<td>日 本 晴</td>
<td>50</td>
<td>7.25</td>
<td>9.80</td>
<td>8.21 c</td>
<td>0.66</td>
<td>8.0</td>
</tr>
</tbody>
</table>

分散分析：1％水準有意

各品種におけるタンパク質含量の平均値および最低値に対する最高値の指数はトドロキワセ：8.89％・152、

第7図 品種とタンパク質含量の分布

コシヒカリ：7.86％・252、大空：9.18％・129、日本晴：8.21％・135であった。各品種別のタンパク質含量の分布についてみると、コシヒカリおよび日本晴はタンパク質含量の低い方に分布が片寄り、大空は逆に高含量の方へ、トドロキワセは両者のほぼ中間的パターンを示した。さらに、コシヒカリやトドロキワセは大空・日本晴と比べてタンパク質含量の範囲が大きく、耐食性のある後者では小さかった。このことは、コシヒカリなどの品種は品種本来の特性以外の要因によってタンパク質含量が大きく変動する一方、大空・日本晴はその影響が小さく、品種の特性によるタンパク質含量の支配が大きいものと思われる。これら4品種のタンパク質含量に差があるか否か分散分析を行なった結果、コシヒカリは大空よ
り明らかにタンパク質含量が低いことを認めた。しかし、コシヒカリとトドキワセ・日本晴、大空とトドキワセとの間には有意差は認められなかった。

土壤型・品種の違いがタンパク質含量および灰分含量に及ぼす影響を乾物中百分率として第6表〜8表にそれぞれ示した。

第6表 土壌・品種ならびに玄米形質とタンパク質含量（うちら）
(乾物中%)

<table>
<thead>
<tr>
<th>土壌</th>
<th>品種</th>
<th>総合</th>
<th>心</th>
<th>青</th>
<th>平均</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>含</td>
<td>粒</td>
<td>粒</td>
<td>値</td>
</tr>
<tr>
<td>アキヒカリ</td>
<td>8.82</td>
<td>9.08</td>
<td>9.10</td>
<td>9.38</td>
<td>9.10</td>
</tr>
<tr>
<td>初 星</td>
<td>8.74</td>
<td>8.70</td>
<td>8.45</td>
<td>9.36</td>
<td>8.81</td>
</tr>
<tr>
<td>トヨシキ</td>
<td>8.68</td>
<td>8.01</td>
<td>8.14</td>
<td>9.00</td>
<td>8.46</td>
</tr>
<tr>
<td>コシヒカリ</td>
<td>9.94</td>
<td>8.65</td>
<td>7.64</td>
<td>8.30</td>
<td>7.43</td>
</tr>
<tr>
<td>平均値</td>
<td>8.37</td>
<td>8.25</td>
<td>8.47</td>
<td>9.02</td>
<td>8.92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>土壌</th>
<th>品種</th>
<th>総合</th>
<th>心</th>
<th>青</th>
<th>平均</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>含</td>
<td>粒</td>
<td>粒</td>
<td>値</td>
</tr>
<tr>
<td>アキヒカリ</td>
<td>9.07</td>
<td>9.23</td>
<td>8.60</td>
<td>8.76</td>
<td>8.92</td>
</tr>
<tr>
<td>初 星</td>
<td>8.75</td>
<td>9.19</td>
<td>9.07</td>
<td>9.69</td>
<td>9.18</td>
</tr>
<tr>
<td>トドキワセ</td>
<td>8.78</td>
<td>9.13</td>
<td>8.69</td>
<td>9.75</td>
<td>9.09</td>
</tr>
<tr>
<td>トヨシキ</td>
<td>9.35</td>
<td>8.39</td>
<td>8.74</td>
<td>8.45</td>
<td>8.95</td>
</tr>
<tr>
<td>コシヒカリ</td>
<td>8.87</td>
<td>8.60</td>
<td>8.78</td>
<td>9.69</td>
<td>8.99</td>
</tr>
<tr>
<td>平均値</td>
<td>8.96</td>
<td>9.09</td>
<td>8.78</td>
<td>9.27</td>
<td>8.92</td>
</tr>
</tbody>
</table>

第7表 土壌および品種とタンパク質含量（うちら）
(乾物中%)

<table>
<thead>
<tr>
<th>品種</th>
<th>グラインダ</th>
<th>泥炭土壌</th>
<th>泥炭土壌</th>
<th>泥炭土壌</th>
</tr>
</thead>
<tbody>
<tr>
<td>ふ 系</td>
<td>133号</td>
<td>9.16</td>
<td>9.69</td>
<td>9.09</td>
</tr>
<tr>
<td>ヒメノモチ</td>
<td>8.85</td>
<td>8.95</td>
<td>9.01</td>
<td></td>
</tr>
<tr>
<td>ヒデモチ</td>
<td>8.73</td>
<td>8.73</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td>恵</td>
<td>7.98</td>
<td>8.66</td>
<td>8.66</td>
<td></td>
</tr>
<tr>
<td>信濃縮3号</td>
<td>7.72</td>
<td>7.72</td>
<td>7.72</td>
<td></td>
</tr>
<tr>
<td>マンゲツモチ</td>
<td>7.76</td>
<td>7.76</td>
<td>7.76</td>
<td></td>
</tr>
</tbody>
</table>

第8表 土壌および品種と灰分含量
(乾物中%)

<table>
<thead>
<tr>
<th>品種</th>
<th>グラインダ</th>
<th>泥炭土壌</th>
<th>泥炭土壌</th>
<th>泥炭土壌</th>
</tr>
</thead>
<tbody>
<tr>
<td>アキヒカリ</td>
<td>1.79</td>
<td>1.79</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td>初 星</td>
<td>1.68</td>
<td>1.68</td>
<td>1.68</td>
<td>1.68</td>
</tr>
<tr>
<td>トドキワセ</td>
<td>1.53</td>
<td>1.53</td>
<td>1.53</td>
<td>1.53</td>
</tr>
<tr>
<td>トヨシキ</td>
<td>1.60</td>
<td>1.60</td>
<td>1.60</td>
<td>1.60</td>
</tr>
<tr>
<td>コシヒカリ</td>
<td>1.45</td>
<td>1.45</td>
<td>1.45</td>
<td>1.45</td>
</tr>
</tbody>
</table>

土壤の違いがタンパク質含量に及ぼす影響についてみると、泥炭土壌は中粒種グラインダと比べいずれの品種でも高含量の傾向がみられ、供試品種の平均値指標でみると水稲うちち：107，同ちち：103であった。

品種とタンパク質含量の関係は、うるちの極早生種、アキヒカリから中生のコンヒカリに従ってタンパク質含量の低下する傾向がみられたが、前述の大空・日本晴のように中生〜晩生種でも比較的高含量のものもあるので、極早生から晩生種に従って低下するとは言い難い。一方、もちについてもうるちと同様な傾向であった。うるちともちのタンパク質含量に差があるか否かを分散分析した結果、有意差は認められなかった。

灰分含量との関係についてみると、土壤型の違いによる有意差は認められなかったが、極早生〜中生になるに従って低下する傾向であった。

コンヒカリが低タンパク質含量となった要因としては平ら性が好まなかったササニシキ玄米中のタンパク質含量の調査結果と極めて良く似ていた。すなわち、コンヒカリの栽培は栽培緑葉等の中において基肥窒素量が大空および日本晴などに比べ少肥条件でも基肥の確保が容易でしかも適期整肥の実施によって品質・食味のよい良質米が得られる。

早生品種のタンパク質含量が高いうる原因としては一般に幼穂形成を経て出穂するまで穀体中の窒素が高含量であることが認められている。従って、中生あるいは晩生品種でも基肥窒素量や出穂期前後の窒素の多施用を必要とする品種であれば、穀体中の高能効条件によって玄米のタンパク質含量は高まるものと推定される。

さらに、タンパク質含量に影響を及ぼすものとして、土壤からの窒素供給を考える。すなわち、泥炭土壌産の玄米はグラインダ土壌産に比べてタンパク質含量が高かった。泥炭土壌のように未分解の有機物を多量に含む土壌では地温の上昇にともなって穀糖期に従って分解が進み、無機化された窒素が急に吸収されたためと思われる。

灰分含量の変動要因については土壤間差よりも土壌の状態・管理・栽培法・土壌改良剤などの影響が大きいものと思われる。品種との関係では、同一施肥条件におい
て早生で高く中生～晚生に従って低くなる傾向がみられた。

IV 栽培時期・品種の違いが玄米の一般成分および脂肪酸組成に及ぼす影響

試験Ⅱにおいて品種によってタンパク質含量および灰分含量の異なることを認めた。しかし、このことが品種間差なのか気象条件等の影響なのか明らかでない。したがって、早生・中生の水稲を試し、栽培時期を異にしたときの化学成分および脂肪酸組成に及ぼす影響を検討した。

1 試験方法

1) 試料

試料は水稲のうち、初星・コシヒカリを竜崎試験地の圃場（中稲粒ブライ土壌）において、1983年5月10日、5月25日、6月10日と15日間隔で3回播種した潜水土壌中直播栽培で得られた玄米を用いた。播種種類は基肥窒素量を初星は0.5kg/a、コシヒカリは0.35kg/aを全層施肥とし、追肥は3葉期に各々窒素0.2kg/a、稔肥は出穗15～20日にN：K2Oを0.3kg/aに施用した。播種方法は人力播種機でカルバー粉衣の種子を0.4kg/a目標で播種した。

2) 定量方法

タンパク質および灰分の定量法は試験Ⅰ・Ⅱに準じた。実質は30メッシュに粉砕したのち、ソックスレー抽出器によるエチルエーテル抽出法により定量し、脂肪酸は同法により抽出した脂質を、三酸化ホウ素法により脂肪酸メチルエステルとし、これをガスクロマトグラフィーにより定量した。その分析条件は、ガスクロマトグラフ：島津G C－6 A－P F, カラム：ステレンス3nmφ×2m, 充填剤：Unisol 3000 Uniport C60/100（ガスクロ工業株式会社製）、カラム温度：150℃→220℃2℃/minの昇温、注入温度：220℃、キャリアガス：H240NL/min、FIDはH235ml/min、空気0.5L/minとして行なった。脂質の乾物換算用の水分定量は135℃1時間乾燥法によった。

2 結果および考察

作期を異にした潜水土壌中直播栽培により玄米のタンパク質含量・脂質含量ならびに灰分含量を乾物中百分率として第9表に示した。

第9表 潜水土壌中直播の作期と玄米の化学成分（乾物中％）

<table>
<thead>
<tr>
<th>品種</th>
<th>播出期</th>
<th>成熟期</th>
<th>熟熟気温</th>
<th>平均</th>
<th>タンパク質</th>
<th>脂質</th>
<th>灰分</th>
</tr>
</thead>
<tbody>
<tr>
<td>コシヒカリ</td>
<td>5.10</td>
<td>8.15</td>
<td>9.24</td>
<td>22.2</td>
<td>8.25</td>
<td>2.74</td>
<td>1.45</td>
</tr>
<tr>
<td>初星</td>
<td>5.25</td>
<td>8.25</td>
<td>10.10</td>
<td>21.0</td>
<td>7.86</td>
<td>2.50</td>
<td>1.49</td>
</tr>
<tr>
<td></td>
<td>6.10</td>
<td>9.2</td>
<td>10.24</td>
<td>18.8</td>
<td>7.04</td>
<td>2.46</td>
<td>1.42</td>
</tr>
</tbody>
</table>

タンパク質含量分散分析 1sd(5%) : 0.701

出穂・コシヒカリとも播種期が遅くなるに従って3成分とも低含量になる傾向を認めた。各成分における品種間差はみられなかった。播種期の違いが同一品種の各成分に及ぼす影響をみると、出穂・成熟期の違い、すなわ

第10表 作期と脂肪酸組成（全脂肪酸中重量％）

<table>
<thead>
<tr>
<th>脂肪酸</th>
<th>14:0</th>
<th>16:0</th>
<th>16:1</th>
<th>18:0</th>
<th>18:1</th>
<th>18:2</th>
<th>18:3</th>
<th>20:0</th>
<th>20:1</th>
<th>22:0</th>
<th>24:0</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.10</td>
<td>0.2</td>
<td>16.5</td>
<td>0.3</td>
<td>2.1</td>
<td>41.2</td>
<td>35.4</td>
<td>1.3</td>
<td>0.8</td>
<td>0.7</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>5.25</td>
<td>0.3</td>
<td>17.2</td>
<td>0.2</td>
<td>2.0</td>
<td>41.1</td>
<td>35.0</td>
<td>1.3</td>
<td>0.8</td>
<td>0.7</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>6.10</td>
<td>0.2</td>
<td>17.3</td>
<td>0.2</td>
<td>1.7</td>
<td>39.8</td>
<td>36.5</td>
<td>1.4</td>
<td>0.7</td>
<td>0.4</td>
<td>0.4</td>
<td>0.9</td>
</tr>
</tbody>
</table>

注：14:0・ミリスチン酸、16:0・パルミチン酸、16:1・パルミトレイン酸、18:0・ステアリン酸、18:1・オレイン酸、18:2・リノール酸、18:3・リノレン酸、20:0・アラキジン酸、20:1・エイコセン酸、22:0・ペヘン酸、24:0・リグノセリン酸

-59-
ち、登熟気温が低下するに従って3成分とも低下する傾向であった。ときにタンパク質含量は5月10日播種を100とすれば6月10日播種の指数は85～87と低下した。

次に、脂肪酸組成を全脂肪酸中重量百分率として第10表に示した。

各作期の主な脂肪酸はオレイン酸とリノール酸であった。作期の違いによる登熟気温の低下にともないパルミチン酸およびリノール酸が増加し、オレイン酸は低下する傾向であった。

以上のことから、タンパク質含量の変動を気象条件からみると、登熟期間の高気温および高湿温によってタンパク質含量が増加し、9月から10月にかけて登熟する中晩生およびムギ類の栽培栽培は登熟気温の低下および日照時間の減少などからタンパク質含量も低下するものと考えられる。

脂肪含量の変動は同一品種の作期間別脂肪含量に差を認めており、栽培時期が早いほど高い傾向を示し、登熟期間の日平均気温と正の相関が見られたことは平ら162も認めているので、脂肪含量は登熟気温に支配されているといえよう。なお、脂肪含量に品種間差が認められなかった要因として、初穂が感温性の高い品種のため、播種期の遅れにともないコシヒカリと同程度の出穂・成熟期となって登熟温度を経過した結果と考えられる。

脂肪酸組成について、本試験ではいずれの作期もオレイン酸が最高含量を示したが、登熟気温の低下によりオレイン酸が低下し、リノール酸の増加がみられた。このいずれが最高含量になるかは主として登熟気温に影響され、高温条件では前者が、低温条件では後者が最高含量を示す163といわれている。しかし、本調査では明らかでなかった。このことは、各作期の登熟気温の差が小さかったためと思われる。

V 土壌型と穂肥施用時期がコシヒカリ玄米の一般成分と炊飯特性に及ぼす影響

玄米のタンパク質含量を高める自然的要因として、泥炭土壌における窒素の後効と、人為的要因としての出穂期以降の実肥が推定された。そこで、県南地域を代表し、る3土壌型について、穂肥・実肥の施用時期が玄米のタンパク質含量・脂肪含量ならびに灰分含量と炊飯特性に及ぼす影響について検討した。

1 試料方法

1) 試 養

試料はコシヒカリを種粒当量ı土壌（筑波町筑波）、中粗粒タイイ土壌（釧路町試験田圃場）、泥炭土壌（駒ケ崎市大宮）において、作期を用いる場合：秋耕形成期、減数分裂期、穂穂期にそれぞれN：K2Oを0.3kg/haを施用し、無追肥区も加えて栽培したところから得られた玄米を用いた。耕種概要は各試験地とも基肥窒素量を0.4～0.5kg/haとし、5月3日～8日に稲苗を移植した。作期間中は管理が農家慣行に従った。

2) 定量方法

試験1～3に準じた。

3) 炊飯特性の測定方法

炊飯方法はガーゼで十分に除脂した精米20gを試料皿にとり、蒸留水34mLを加えて30分水浸し、電気釜に水50mLを入れて炊飯した。スイッチが切れてから15分蒸らした後、30℃の定温器で30分冷後、デクスチュロメーターで測定した。反復は1試料につき5回行った。

2 結果および考察

1) 追肥時期と玄米形質ならびに玄米の一般成分

各土壌型における追肥時期と玄米形質については第11表に示した。

各土壌型に共通した特徴として、無追肥では整粒歩合が高い、追肥時期が出穂期以前の早いものほど青米や腹白米などの未熟粒が増加し、整粒歩合の低下をもたらした。

玄米諸形質の化学成分についてはこの試料を用いて次のように玄米形質を分類し分析に供した。1) 総合粒：稜目節17mで選別したままの玄米、2) 総粒：被害粒、未熟粒、死米などを除いた完全粒、3) 心白粒：白色不透明部分が粒面の1/2以上のもの、4) 青米：露緑色で玄米の充実が明らかに整粒より劣るものの4グループである。それぞれの分析結果を第12～14表にそれぞれ示した。
第11表 土壌型および追肥時期と玄米形質

<table>
<thead>
<tr>
<th>土壌型</th>
<th>追肥時期</th>
<th>整 粒</th>
<th>半熟粒</th>
<th>熟粒</th>
<th>紐粒</th>
<th>無追肥</th>
<th>被害粒</th>
</tr>
</thead>
<tbody>
<tr>
<td>細粒</td>
<td>幼穂形成期</td>
<td>77.4</td>
<td>2.9</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td>減数分裂期</td>
<td>78.7</td>
<td>5.8</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>穂 揺</td>
<td>82.5</td>
<td>4.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>無追肥</td>
<td>85.0</td>
<td>3.0</td>
<td>0</td>
<td>0.4</td>
<td>0</td>
<td>6.5</td>
</tr>
<tr>
<td>泥炭土壌</td>
<td>幼穂形成期</td>
<td>72.6</td>
<td>3.6</td>
<td>3.3</td>
<td>0.4</td>
<td>0.3</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td>減数分裂期</td>
<td>73.3</td>
<td>4.2</td>
<td>2.7</td>
<td>0</td>
<td>0</td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td>穂 揺</td>
<td>77.5</td>
<td>3.0</td>
<td>0.8</td>
<td>0.2</td>
<td>0</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td>無追肥</td>
<td>78.7</td>
<td>1.6</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
<td>14.1</td>
</tr>
<tr>
<td>中粗粒</td>
<td>幼穂形成期</td>
<td>72.0</td>
<td>7.6</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>16.4</td>
</tr>
<tr>
<td></td>
<td>減数分裂期</td>
<td>77.3</td>
<td>7.5</td>
<td>0.2</td>
<td>0</td>
<td>0.2</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>穂 揺</td>
<td>80.1</td>
<td>7.0</td>
<td>0.4</td>
<td>0</td>
<td>0.2</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>無追肥</td>
<td>91.5</td>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.2</td>
</tr>
</tbody>
</table>

第12表 土壌型・追肥時期ならびに玄米形質とタンパク質含量

(乾物中％)

<table>
<thead>
<tr>
<th>土壌型</th>
<th>玄米形質</th>
<th>追肥時期</th>
<th>幼穂形成</th>
<th>減数分裂</th>
<th>穂 揺</th>
<th>無追肥</th>
</tr>
</thead>
<tbody>
<tr>
<td>細粒</td>
<td>総合粒</td>
<td>7.46</td>
<td>7.56</td>
<td>8.01</td>
<td>6.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>総粒</td>
<td>7.47</td>
<td>7.97</td>
<td>8.20</td>
<td>6.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>青米</td>
<td>8.39</td>
<td>9.29</td>
<td>9.05</td>
<td>8.99</td>
<td></td>
</tr>
<tr>
<td>グライ土壌</td>
<td>総合粒</td>
<td>8.90</td>
<td>8.87</td>
<td>8.76</td>
<td>7.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>総粒</td>
<td>8.25</td>
<td>8.60</td>
<td>8.94</td>
<td>7.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>青米</td>
<td>9.01</td>
<td>9.69</td>
<td>9.03</td>
<td>8.64</td>
<td></td>
</tr>
<tr>
<td>泥炭土壌</td>
<td>総合粒</td>
<td>8.49</td>
<td>9.02</td>
<td>9.03</td>
<td>6.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>総粒</td>
<td>8.13</td>
<td>8.77</td>
<td>8.76</td>
<td>6.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>青米</td>
<td>8.77</td>
<td>8.57</td>
<td>8.94</td>
<td>6.97</td>
<td></td>
</tr>
<tr>
<td>中粗粒</td>
<td>総合粒</td>
<td>8.49</td>
<td>9.02</td>
<td>9.03</td>
<td>6.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>総粒</td>
<td>8.13</td>
<td>8.77</td>
<td>8.76</td>
<td>6.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>青米</td>
<td>8.77</td>
<td>8.57</td>
<td>8.94</td>
<td>6.97</td>
<td></td>
</tr>
</tbody>
</table>

分散分析：土壌型（総合粒）**
追肥時期（総合粒）**
玄米形質**
注：**と***は1％、5％有意水準で差を認めたもの

タンパク質含量は、土壌型の影響について、追肥をこみにした平均値でみると、細粒グライ土壌は青米を除く総合粒・整粒ならびに心白粒において他の土壌型より低含量の傾向がみられた。以下、中粗粒グライ土壌、泥炭土壌の順に高含量となった。一方、土壌から由来する窒素が玄米のタンパク質含量に及ぼす影響を各無追肥の整粒でみると、泥炭土壌は他の細粒～中粗粒グライ土壌より11～15％の高含量を示した。心白粒ではその差が小さいものの整粒と同様の傾向がみられたが、青米では一定の傾向はみられなかった。

穂肥施用時期がタンパク質含量に及ぼす影響についてみると、各土壌型とも幼穂形成期の追肥に比べ出穂期には近づく追肥ほど総合粒・整粒のタンパク質含量を高める傾向がみられた。すなわち、穂肥から実肥への過度なる追肥によるタンパク質含量の増加を無追肥のものと比較すると、3土壌型における整粒の平均値指数で幼穂形成期121、減数分裂期127、穂揺期129であった。この傾向は総合粒・心白粒・青米においても整粒と比べ数％の差があるものの、ほぼ同様の傾向を示した。

灰分含量については、各穂肥・実肥処理区は無追肥区に比べ高含量の傾向がみられるものの、穂肥時期による差は認められなかった。また、土壌による差も少なかった。なお、脂質含量は、土壌型および穂肥時期の違いによる影響は認められなかった。

以上のことから、コンピュータス玄米の高タンパク質含量になる要因として、穂揺期の窒素追肥および泥炭土壌、玄米形質における青米・心白粒などの未熟粒が被るタンパク質含量と窒素施肥の関係については実肥の
第13表 土壌型および追肥時期と灰分含量
(乾物中％)

<table>
<thead>
<tr>
<th>土壌型</th>
<th>稲期 飲分 清穏 無 平 均</th>
<th>追肥時期</th>
<th>稲期 数期 飢進 追肥 均 値</th>
</tr>
</thead>
<tbody>
<tr>
<td>細粒グライ土壌</td>
<td>1.55 1.54 1.53 1.47 1.52</td>
<td>稲期数期</td>
<td>1.45 1.55 1.40 1.50</td>
</tr>
<tr>
<td>泥炭土壌</td>
<td>1.38 1.50 1.47 1.43 1.45</td>
<td>稲期数期</td>
<td>1.45 1.55 1.40 1.50</td>
</tr>
<tr>
<td>中粗粒グライ土壌</td>
<td>1.61 1.45 1.55 1.40 1.50</td>
<td>稲期数期</td>
<td>1.45 1.55 1.40 1.50</td>
</tr>
<tr>
<td>平均値</td>
<td>1.51 1.50 1.52 1.43</td>
<td>稲期数期</td>
<td>1.45 1.55 1.40 1.50</td>
</tr>
</tbody>
</table>

分散分析：N.S

施用量とタンパク質含量の間には正相関が認められて
いることから、穂稲期以降の窒素追肥はタンパク質含量
の増加に影響することが明らかに認められる。このこと
は試験IIの結果とも一致する。

さらに、稲米形質における青米は整粒に比べ著しく高
含量であり、心白米も高含量の傾向であった。このこと
は、栽培環境・気象条件により異なり、穂稲期後期におけ
る気象環境が不良条件に渇でん粉の充実は穂稲期後期
にはよろしき後期には劣るため、穂稲組織の部外あるいは
内部で充実が劣ることに起因しているものと思われる。
したがって、同一追肥条件ならば、粒が充実し整粒歩合
の高い稲米は未熟粒の多いものと比べてタンパク質含量が
低いといえよう。

第14表 土壌型および追肥時期と脂質含量
(乾物中％)

<table>
<thead>
<tr>
<th>土壌型</th>
<th>稲期 飲分 清穏 無 平 均</th>
<th>追肥時期</th>
<th>稲期 数期 飢進 追肥 均 値</th>
</tr>
</thead>
<tbody>
<tr>
<td>細粒グライ土壌</td>
<td>2.69 2.61 2.71 2.67</td>
<td>稲期数期</td>
<td>2.65 2.63 2.60</td>
</tr>
<tr>
<td>泥炭土壌</td>
<td>2.54 2.56 2.58 2.56</td>
<td>稲期数期</td>
<td>2.65 2.63 2.60</td>
</tr>
<tr>
<td>中粗粒グライ土壌</td>
<td>2.53 2.65 2.63 2.60</td>
<td>稲期数期</td>
<td>2.65 2.63 2.60</td>
</tr>
<tr>
<td>平均値</td>
<td>2.59 2.61 2.64</td>
<td>稲期数期</td>
<td>2.65 2.63 2.60</td>
</tr>
</tbody>
</table>

分散分析：N.S

2) 稲米の化学成分と炊飯特性

土壌型および穂稲時期が炊飯特性・食味評価に及ぼす
影響について第15〜16表にそれぞれ示した。

テクスチュロメーター特性値と食味評価の関係は付着
性・粘着力が大きく、硬さ/付着性および硬さ/粘着力
の小さいものが一般に食味も良いとされている1)。各土
壌型における特性はいずれも有意差は認められなかった。
一方、穂稲期と各特性値の関係では硬さ/粘着力、硬
さ/粘着力ならびに硬さ/付着性に有意差が認められた。

すなわち、減数分裂期追肥および無追肥は穂稲期追肥と
比べ硬さを劣るものの粘着力はままさ、硬さ/粘着力・
硬さ/付着性のいずれも小さかった。また、穂稲期追肥
ではこれらと逆の傾向を認めた。

第15表 土壌型および追肥時期と炊飯特性値

<table>
<thead>
<tr>
<th>土壌型</th>
<th>追肥時期</th>
<th>硬さ T.U</th>
<th>粘着力付着性 T.U</th>
<th>硬さ/粘着力</th>
<th>硬さ/付着性</th>
</tr>
</thead>
<tbody>
<tr>
<td>細粒グライ土壌</td>
<td>減数分裂期</td>
<td>2.06 1.54 0.33 1.40</td>
<td>5.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>稲期</td>
<td>2.74 1.10 0.23 2.65</td>
<td>12.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>無追肥</td>
<td>2.27 1.68 0.31 1.26</td>
<td>7.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>泥炭土壌</td>
<td>減数分裂期</td>
<td>2.27 1.67 0.39 1.38</td>
<td>5.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>稲期</td>
<td>2.45 0.99 0.21 2.62</td>
<td>11.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>無追肥</td>
<td>2.17 1.61 0.45 1.89</td>
<td>5.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>中粗粒グライ土壌</td>
<td>減数分裂期</td>
<td>2.20 1.77 0.36 1.32</td>
<td>6.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>稲期</td>
<td>2.54 1.43 0.20 1.78</td>
<td>12.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>無追肥</td>
<td>2.18 1.76 0.35 1.24</td>
<td>6.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

最小有意差（5％）

<table>
<thead>
<tr>
<th>土壌型</th>
<th>追肥時期</th>
<th>N.S</th>
<th>N.S</th>
<th>N.S</th>
<th>N.S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.507</td>
<td>0.412</td>
<td>1.171</td>
<td>3.588</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
第16表 産地・追肥時期と食味評価

<table>
<thead>
<tr>
<th>追肥時期</th>
<th>食味の基準品</th>
<th>比較土壤型</th>
<th>平均値及び標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>質数分裂期</td>
<td>A中粒粒灰色土壌</td>
<td>B泥炭土壌</td>
<td>-0.370 ± 1.245</td>
</tr>
<tr>
<td></td>
<td>C細粒粒灰色土壌</td>
<td></td>
<td>0.370 ± 0.980</td>
</tr>
<tr>
<td></td>
<td>D細粒強粒灰色土壌</td>
<td></td>
<td>-0.259 ± 1.403</td>
</tr>
<tr>
<td>質数分裂末期</td>
<td>A中粒粒灰色土壌</td>
<td>B泥炭土壌</td>
<td>-0.185 ± 1.075</td>
</tr>
<tr>
<td></td>
<td>C細粒粒灰色土壌</td>
<td></td>
<td>0.074 ± 1.174</td>
</tr>
<tr>
<td></td>
<td>D細粒強粒灰色土壌</td>
<td></td>
<td>0.148 ± 1.292</td>
</tr>
<tr>
<td>無追肥</td>
<td>A中粒粒灰色土壌</td>
<td>B泥炭土壌</td>
<td>0.037 ± 0.940</td>
</tr>
<tr>
<td></td>
<td>C細粒粒灰色土壌</td>
<td></td>
<td>0.296 ± 1.295</td>
</tr>
</tbody>
</table>

注：1 パネル数：27
2 細粒強粒灰色土壌の試料は東村上須田のものを作り試した。
栽培条件は試験Vの試験方法に準じた。

玄米の化学成分と炊飯特性の関係は付着性および粘着力においてタンパク質含量と正の相関がみられたが、いずれも有意な相関は認められなかった。脂質・灰分含量においては2特性値とも相関関係はみられなかった。

食味評価は質数分裂期追肥では細粒粒灰色土壌＞中粒粒灰色土壌＞泥炭土壌の順に遅まり、以下、質数分裂末期追肥では細粒粒灰色土壌＞中粒粒灰色土壌＞泥炭土壌、無追肥では細粒粒灰色土壌＞中粒粒灰色土壌＞泥炭土壌の順であった。このことをタンパク質含量との関係でみると、食味評価は低含量のものほど大きな傾向がみられた。

以上のことから、タンパク質含量が高いと炊飯特性的「硬さ」の占める割合が増し、「粘着力」が劣る傾向がみられる。また、食味評価ではタンパク質含量の低いものに良い評価が得られている。

食味評価に有効な理化学的分析として、従来より加熱吸水率・膨張容積・アミログラムの糊化温度・ブレーキダウン・米飯の粘性・弾性の6特性値があげられている。しかし、これらの測定は手間と時間を要することから、本調査で用いた付着性強調アラームによるテクスチュロメーター1)による炊飯特性的測定が可能となった。この測定機による付着性および硬さ／付着性は米飯の粘性・弾性と相関が高く、食味評価との間にも相関が高い1)とされている。この点については食味とタンパク質含量との間に高い相関があると考えられる。すなわち、こもめ含め既往の研究方法と異なる角度から検討する必要があると思われる。

VI 泥炭土壌における水稲の後期水管理と玄米の一部成分と炊飯特性に及ぼす影響

泥炭土壌の分布する地域では、従来から地下水位が高く、玄米形質も劣る傾向がみられている。そこで、後期水管理を中心に排水時期による玄米の品質向上について検討した。

1 試験方法

1) 試料

(1) 架試験：試料は竜ヶ崎試験地内に1m×1m×0.35mの有底の枠を埋設し、泥炭出水位置が田面下15～20cmとなるよう泥炭土壌を充填し、その上にクライ土壌をうわのせした人工水田で栽培した玄米を用いた。水管理はa：幼穂形成期以降は間断灌水、出穂期に排水、b：
第17表 泥炭土壌における後期水管理と玄米の化学成分
(乾物中％)

<table>
<thead>
<tr>
<th>後期水管理</th>
<th>テンシク質</th>
<th>脂質含量</th>
<th>灰分含量</th>
</tr>
</thead>
<tbody>
<tr>
<td>出穂期前排水</td>
<td>7.33</td>
<td>2.48</td>
<td>1.54</td>
</tr>
<tr>
<td>出穂10日後排水</td>
<td>7.39</td>
<td>2.56</td>
<td>1.58</td>
</tr>
<tr>
<td>出穂23日後排水</td>
<td>8.15</td>
<td>2.41</td>
<td>1.55</td>
</tr>
<tr>
<td>*出穂23日後排水</td>
<td>7.40</td>
<td>2.51</td>
<td>1.59</td>
</tr>
</tbody>
</table>

注：*は対象区のグライ土壌区である。
出穂期排水・出穂10日後排水区は出穂形成期から排水まで間断浸水
出穂23日後排水区は排水まで常時浸水
*出穂23日後排水区（グライ土壌）は出穂期から排水まで間断浸水

第18表 泥炭土壌における後期水管理と玄米収量および玄米形質

<table>
<thead>
<tr>
<th>後期水管理</th>
<th>玄米</th>
<th>千粒</th>
<th>登正</th>
<th>砂粒</th>
<th>熟合</th>
<th>粒合</th>
<th>粒粒</th>
<th>被害</th>
<th>稲検</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/㎡</td>
<td>g</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>出穂期排水</td>
<td>358</td>
<td>21.5</td>
<td>91.2</td>
<td>90.4</td>
<td>2.8</td>
<td>6.8</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>出穂10日後排水</td>
<td>364</td>
<td>21.4</td>
<td>90.1</td>
<td>86.7</td>
<td>7.3</td>
<td>6.0</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>出穂23日後排水</td>
<td>341</td>
<td>21.4</td>
<td>83.7</td>
<td>81.9</td>
<td>11.3</td>
<td>8.5</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*出穂23日後排水</td>
<td>373</td>
<td>21.5</td>
<td>93.0</td>
<td>92.3</td>
<td>1.2</td>
<td>4.0</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第19表 後期水管理と炊飯特性（現地試験）

<table>
<thead>
<tr>
<th>アミログラム特性値</th>
<th>後期水管理</th>
</tr>
</thead>
<tbody>
<tr>
<td>染化開始温度</td>
<td>℃</td>
</tr>
<tr>
<td>最高粘度</td>
<td>B.U</td>
</tr>
<tr>
<td>最高温度</td>
<td>℃</td>
</tr>
<tr>
<td>92.5℃時の粘度</td>
<td>B.U</td>
</tr>
<tr>
<td>ブレーカダウン</td>
<td>B.U</td>
</tr>
<tr>
<td>50℃時の粘度</td>
<td>B.U</td>
</tr>
<tr>
<td>冷却時の粘度增加</td>
<td>B.U</td>
</tr>
<tr>
<td>コンシステンシー</td>
<td></td>
</tr>
<tr>
<td>ブレーカダウン/コンシステンシー</td>
<td></td>
</tr>
</tbody>
</table>

第20表 後期水管理と玄米収量および玄米形質

<table>
<thead>
<tr>
<th>後期水管理</th>
<th>玄米</th>
<th>千粒</th>
<th>登正</th>
<th>砂粒</th>
<th>熟合</th>
<th>粒合</th>
<th>粒粒</th>
<th>被害</th>
<th>被害</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kg/㎡)</td>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>出穂期排水</td>
<td>57.1</td>
<td>20.5</td>
<td>87.6</td>
<td>87.3</td>
<td>5.3</td>
<td>7.4</td>
<td>2.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>常時浸水</td>
<td>52.7</td>
<td>19.9</td>
<td>80.5</td>
<td>78.4</td>
<td>13.5</td>
<td>8.1</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-64-
表にそれぞれ示した。

出穂期排水区は常時灌水区に比べ玄米重が大きかっ
ては千粒重・容積重が出穂期排水区で大きくなることに起
因した。玄米形態は数値と同様に出穂期排水区で未熟
粒の減少による整粒程度の向上がみられ、検査等級も上
位等級であった。

炊飯特性をアミログラム特性値でみると、出穂期排水
区は常時灌水区と比べ最高粘度・ブレークダウンならび
にコンシスタンシーが小さかった。これは、一般に最高
粘度・ブレークダウンの値が小さい手は食味が良いとさ
れるから、出穂期排水区は常時灌水区に比べ食味の
ささすることが認められた。

以上のところから、泥炭土地では出穂期から排水処理す
ると常時灌水区に比べタック値量の低下と玄米形質・
炊飯特性が向上することが認められた。しかし、この機
作については明らかにすることが図なかったので、今
後、土壌中の窒素の動態、水稲の窒素吸収などからの検
討が必要である。

謝
辞

本研究は筆者が1983年10月1日から12月28日まで
依頼研究者として、農林水産省食品総合研究所で同所分
析栄養部・規格鑑定研究室室長・平宏和博士の御指導と
御協力をいただき、御校閑まで賜わった。ことに厚く感
謝の意を表します。

さらに、同所・柳瀬竜室長、具沼圭二博士には炊飯特
性の測定に関与している御便宜と御指導をいただいた。
また、当場孝井一首席研究員には御助言をいただき、安
井健枝官および当場幸田浩俊主任研究員には電算機等で
御援助をいただいた。試料採取および品質・食味調査に
につれては農業改良普及所をはじめ病害虫防除所の各位な
らびに当所の塩崎昭光・石原正敏・佐藤修*主任研究員
（*現在・専門技術員）、井神信夫氏に御協力をいただい
た。厚くお礼申し上げる。

総括

茨城県における水稲玄米の化学成分の実態とその変動
要因を県下全域から集めた試料をもとに品種・土壌・窒
素追肥時期・玄米品質等から検討した。その結果を要約
すれば次のとおりである。

1 本県産コンキカリ玄米のタンパク質含水量は平均
7.89%、範囲6.40～10.00%であった。他の品種ではト
ドロニキセ：8.89%、大空：9.18%、日本晴：8.21%であった。

2 県内における市町村の比較ではタンパク質含水量
有意差を認めたが、タンパク質含量・検査等級・千粒重
ならびに整粒歩合の特性値からの県内地域区分は明か
でなかった。

3 検査等級が下位等級になるに従って、玄米のタン
パク質含量は高くなり、整粒歩合が高くなるに従って低
下した。

4 うるち・もちとも早生は高タンパク質含量となっ
た。大空・日本晴のような多肥性の品種は品種固有の高
タンパク質含量を有しているものと推定された。

5 玄米のタンパク質含量は早生・中生種とともに作期
が選れるに従い低下し、熟期期間の気象条件に支配され
ることが認められた。

6 窒素追肥時期では出穂期以降の実肥で明らかにタ
ンパク質含量が高くなり、炊飯特性の硬さ/粘着力およ
び硬さ/付着性も高くなり、食味評価も劣った。

7 泥炭土壌はサライ土壌に比べタック値量が高
い傾向であった。しかし、出穂期期の排水処理によって
低含量になりうることが認められた。さらに、この処理
によって玄米形質・炊飯特性が向上した。

8 玄米形質のうち青米は整粒に比べ著しく高タック
值量であった。したがって、青米の多少が玄米タン
パク質含量に及ぼす影響は大きかった。

9 脂質および灰分含量は土壌・窒素追肥時期による
影響は少なかったが、熟期期の温度が高いと高含量とな
り、低下するに従い低含量になる傾向がみられた。

10 脂肪酸組成は主としてオレイン酸とリノール酸が
占め、熟期期の湿度が高温条件になるとオレイン酸が、
低温条件になるとリノール酸が増加する傾向がみられた。
引用文献

1. 遠藤・柳瀬・竹野（1980）：米飯の食味評価の簡易化のためのテスクチャーメーター用付着性アームの製作ならびに標準アームとの比較。日食工誌27，185-189
2. 茨城県農林水産部（1982）：普通作物耕種基準
3. 石間紀男・平・宏和・平・牧枝・御子柴・吉川誠次（1974）：食穀研報29，9-15
4. 石塚喜明・田中・明（1969）：“水稲の栄養生理”養賢堂 P151
5. 岡野博文・平沢信夫・島田裕之・関谷敏郎・坂本（1975）：水稲の収穫適期の判定と収穫時期および乾燥法が品質食味に及ぼす影響。茨城農試研報16，21-42
6. 科学技術庁資源調査会編（1963）：三訂日本食品標準成分表（大蔵省印刷局）：18
7. 木戸三夫・栗原昭昭（1965）：米粒成分濃度過程の組織化学的研究。日作記34，204-209
8. 本庄一雄（1971）：米のタンパク質に関する研究。第一報。タンパク質含有率の品種間差異ならびにタンパク質含有率に及ぼす気象環境の影響。日作記40，183-189
9. ———（1971）：米のタンパク質に関する研究。第二報。施肥条件の影響が玄米のタンパク質含有率およびタンパク質総量に及ぼす気象環境の影響。日作記40，190-196
10. 長戸一雄（1952）：心白・乳白米及び腹白の発生に関する研究。日作紀21，26-27
11. 農林水産技術研究会（1970）：米の食味改善に関する特別研究資料
12. 農林漁業技術協会（1976）：農業技術大系 599-629
13. 食糧庁検査課監修（1975）：農産物検査手帳
14. 平・宏和・平・牧枝（1972）：北海道産水稲うるち玄米のタンパク質含有率。日作記41，44-50
15. ————・星川清親・平・牧枝（1972）：矮性水稲玄米のタンパク質含有率。日作記41，155-159
16. ————・平・牧枝（1977）：宮城県産ササニシキ玄米のタンパク質含有率。食穀研報32，1-5
17. ————（1970）：多収穫栽培米のタンパク質含有率に与える施肥の影響。日作記39，200-203
18. ————・平・牧枝・藤井啓史（1979）：水稲うるち玄米の脂質含有率および脂肪酸組成および栄養成分の影響。日作記48，371-377
19. 東北農業試験場（1973）：米の品質・食味の向上に関する研究。1-279
20. 谷・達雄（1954）：米麦の検査における品質指標。食穀研報9，245-249
21. 谷・達雄・吉川誠次・竹生新次郎・堀内久称・遠藤・柳瀬（1969）：米の食味評価に関する化学的要因（1）。栄養と食糧22，452-461
Bulletin of the Ibaraki Agricultural Experiment Station

No 24 1984

Contents

1. On the New Recommended Soybean Variety "Enrei" in Ibaraki Prefecture
 ... Tamotsu AKUTSU, Minoru AKIYAMA, Mitsuru KUBOTA,
 Syōji ABE, Hirobumi OKANO, Hirotoshi KODA, Kazuyuki
 IWASE, Takashi KAWANO and Yoshihiro NIITSUMA

2. On the New Recommended Soybean Variety "Miyagiohjiro" in Ibaraki Prefecture
 ... Tamotsu AKUTSU, Minoru AKIYAMA, Hirobumi OKANO,
 Syōji ABE, Mitsuru KUBOTA, Hirotoshi KODA, Kazuyuki
 IWASE, Takashi KAWANO, and Yoshihiro NIITSUMA

3. Inheritance of the Blast-Resistance of Upland Rice Varieties
 Part IV Improvement of the field resistance by the accumulated polygenes
 ... Yoshiaki OKUTSU, Yoshiaki KOGA, Masatoshi ISHIHARA
 and Ritsuo SUGA

4. Studies on the Practicality of Mulch Films of Light Crumbling Type in
 Groundnut Culture
 ... Etsuo NAKAGAWA, Minoru AKIYAMA, Mitsuru KUBOTA and
 Yoshihiro NIITSUMA

5. On the selection of the virus-free seed rhizosphores for Chinese yam necrotic
 mosaic by caused necrotic mosaic virus
 ... Takashi KAWANO, Minoru AKIYAMA, Kazuyuki IWASE,
 Noboru KOIBUCHI, Kō SHIMONAGANE, Etsuo NAKAGAWA,
 Tamotsu AKUTSU and Yoshihiro NIITSUMA

6. The Occurrence of Insect Pests of the Soybean in converted Uplands and its
 Chemical Control
 ... Minoru INO, Keinosuke HARA, Yasuo UEDA, Hisao KIKUTI
 and Riutaro KOMORI

7. Studies on the Chemical Composition of Lowland Brown Rice in Ibaraki Prefecture
 ... Mikio KANO and Hirobumi OKANO