やさい栽培畑からの肥料成分の流出

小山田 勉・酒井 一・津田公男

Outflow of Fertilizer Nutrients From the Vegetable Field

Tutomu OYAMADA, Kuni SAKAI, Kimio TUDA

閉鎖系湖沼の栄養化による汚濁が問題となっているが、農地から流出する栄養塩類もその一因とされている。
そこで、広域やさい栽培畑は環境に肥料成分の流出について調査検討した。その結果、肥料の三要素成分のうち、窒素が流出しやすく、施肥量の21〜28%が流出することが推定され、リン・カリは窒素に比しきわめて小さいことが確認された。

Ⅰ 緒 言

近年、霞ヶ浦をはじめ、公共用水域の栄養化による汚濁が進み各種の利水障害の発生が目立っている。
そこで県は「霞ヶ浦の栄養化の防止に関する条例」（昭和56年）を制定し、工場・事業所に対する排水規制、有リン洗剤の使用禁止により窒素・リンの流入削減をはかかるとした。

また、これ以外の農地排水、水産養殖、家畜ふん尿、家庭排水についても適正管理に基づく排出抑制を義務づけている。

県水質審議会が答申（中間）にした霞ヶ浦に流入する栄養塩類のうち全窒素は11.64トン/日と推定し、このうち農地排水由来のものは2.76トン/日で全体の23.7%である。

リンの流入量は1.25トン/日と推定しこのうち0.1トン/日を農地由来のものとしている。

さらに、霞ヶ浦の流域面積1,949.4㎢のうち農地面積はおよそ1,000㎢で全体の51.3%と広大であることから農地からの栄養塩類の負荷は無視できない。

また、最近の農業は機械化による化学肥料の多施、家畜ふん尿の投棄の多段等による農地への窒素・リンの流入量が多く、これも農地からの負荷を大きくする要因となっている。

農地からの窒素・リン流出についての研究は、水田に関しては数多く見られる。しかし、畑地については小川らがモデルは場で種々調査している程度でその他の事例は少ない。

そこで、筆者らは畑地から公共用水域への窒素・リン負荷の実態を明確にするため、県西部の露地やさい栽培畑広域畑において調査・検討を加えた。その結果若干の知見が得られたので報告する。

なお、本調査は環境庁からの受託調査（土壌環境保全基礎調査）の一環として、昭和57年及び58年の2か年におわたって行ったものである。

Ⅱ 調査地区の概要と調査方法

1 調査地区の概要

1）調査地区の概要
調査施設は県西部の結城郡八千代町東葛田地区内であり、露地やさい栽培を中心とした典型的な畑作地帯である。

調査対象地区は、八千代町南東部に位置し東側に鬼怒川、西側に飯沼川には設された標高約25mの火山灰台地である。
地形は凹地であり，かつて地下水位が高く，多少の降雨で冠水し湿害の常習地であった。そこで，昭和52年受益者の共同出資によって幅約1.4m，深さ最大1.5m，総延長約700mの排水路を掘削し，地表水の排除ならびに地下水位の低下をはかった。これによって現在は湿冠水害もなくやさい栽培の適地となった。

2）集水域の範囲と土地利用

本地区の排水が排水路上に流入する範囲すなわち集水域を決定するため，同地区の見通しのよい地点に基準点を設置し，レベル測量により地の高低を明らかにした。これから10cmの等高線図を作成し，地面の勾配から第1図に示す集水域を決定した。

集水域内の土地利用は第1図及び第1表に示すとおりである。

これによれば，全集水域の面積は16.6haでありこれの
第1表 集水域の土地利用 （㎡）

<table>
<thead>
<tr>
<th>坪</th>
<th>林地</th>
<th>计</th>
</tr>
</thead>
<tbody>
<tr>
<td>125,347（75.5％）</td>
<td>40,720（24.5％）</td>
<td>166,067</td>
</tr>
</tbody>
</table>

75.5％が畑地として利用されている。このほか林地が24.5％あり，樹種は植林による松と松枯れによってできた常緑性のかん皮，雑木である。

3）集水域の土壌

集水域の土壌は，地力保全基本調査による分類基準によれば，表層土腐殖質多湿黒ボク土（西の原統）と表層腐殖質黒ボク土（按統）（以下総称で述べる）の二つのタイプに分類され，その分布状況は第1図に示すとおりである。

これによれば，西の原統は按統に比べ低い場所に分布していることが認められる。両土壌の断面形態については，第1図中の地点において試験調査を行ったが，その結果は第2図のとりである。また，同地点における土壌の理化学性は第2図のとおりである。

試験調査の結果から土壌断面をみると，作土の厚さは，両土壌とも20cm程度であり，士性は壤性である。ローム層の厚さは，西の原統が103cmに対して按統は182cmと厚い。

通称ユナ層といわれる不透水層とされる灰白色粘土層の出現位置は西の原統が103cm，按統が198cmである。

土壌の理化学性については，作土の腐殖含有量が西の

第1図 集水域の土地利用，土壌及び採水地点等
やさい栽培畑からの肥料成分の流出

第2表 代表土壌の化学性

<table>
<thead>
<tr>
<th>土 壌</th>
<th>層位</th>
<th>厚 周</th>
<th>pH</th>
<th>EC (mS/cm)</th>
<th>T-N (%)</th>
<th>T-C (%)</th>
<th>C/N</th>
<th>碱基（%）</th>
<th>CEC（me）</th>
<th>酸性基</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 ～ 21</td>
<td>5.6</td>
<td>5.0</td>
<td>0.596</td>
<td>0.38</td>
<td>5.89</td>
<td>15.5</td>
<td>10.1</td>
<td>28.3</td>
<td>184</td>
</tr>
<tr>
<td>2</td>
<td>21 ～ 42</td>
<td>5.5</td>
<td>4.8</td>
<td>0.395</td>
<td>0.37</td>
<td>5.93</td>
<td>16.0</td>
<td>10.2</td>
<td>27.3</td>
<td>153</td>
</tr>
<tr>
<td>3</td>
<td>42 ～ 103</td>
<td>6.0</td>
<td>5.3</td>
<td>0.465</td>
<td>0.07</td>
<td>0.76</td>
<td>10.9</td>
<td>1.3</td>
<td>20.8</td>
<td>126</td>
</tr>
<tr>
<td>4</td>
<td>103 ～ 129</td>
<td>5.8</td>
<td>4.6</td>
<td>0.140</td>
<td>0.07</td>
<td>0.79</td>
<td>11.3</td>
<td>1.4</td>
<td>18.3</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>129 ～</td>
<td>5.7</td>
<td>4.2</td>
<td>0.115</td>
<td>0.06</td>
<td>0.60</td>
<td>10.0</td>
<td>1.0</td>
<td>19.6</td>
<td>101</td>
</tr>
</tbody>
</table>

表層腐植質	1	0 ～ 22	5.3	4.7	0.500	0.30	3.18	10.6	5.5	24.0	107
多量黒ボク土	2	22 ～ 34	5.4	4.8	0.365	0.27	3.21	11.9	5.5	22.6	110
酸度	3	34 ～ 68	6.1	5.6	0.350	0.19	2.01	10.6	3.5	20.8	148
酸度	4	68 ～ 88	6.2	5.7	0.400	0.14	1.76	12.6	3.0	27.9	150
酸度	5	88 ～	6.2	5.7	0.325	0.16	1.50	9.4	2.6	27.1	111

| 原泥の10.1%に対して吸収は5.5%と約1/2である。リン酸収吸係数はドーム層では2,000程度であり、黒ボク土の特徴がうかがわれる。

置換性塩基、有効態リン酸については、両土壌ともかなり高いことが認められ、やさい栽培土壌の特徴がうかがわれる。硝酸態窒素については、両土壌ともかなり低い層まで認められ、窒素の溶存の大ささをもがたいている。

4) 作物作付と作付及び作付体系

本集水域区内作付されている作物は、夏作にはブリンスメロン（以下メロンに略）、スイカの果菜類が主体であり、その他ゴボウがわずかに作付されている。秋作は、メロン・スイカの作付に全面的にハクサイが作付されている。

各作物の作付については、メロンは6月下旬から3月上旬定植のトネル栽培である。スイカについては、メロンと同様にトネル栽培であるが定植時期はやや遅く3月中旬である。

ゴボウは3月中旬から4月中旬は種の春まきであり、本県ではもっとも多い作付である。

作物の作付体系は、前述のとおり、夏作のメロン、スイカ、この地にハクサイが作付されており大部分がこれのごくにまでとなっている。ゴボウはメロンとの組合せが多く、ゴボウメロンハクサイとなっている。しかし、集水水域におけるゴボウの適地は、地下水位の低い層に限られ、ゴボウとの組合せは小面積となっている。

2 調査方法

1) 排出水量

地区からの排出水量は第1図に示すB地点、すなわち排水路末端部に自記水位計を設置し、排水路の水位を連続観測した。そして実測流量とその時の水位との関係から水位・流量曲線を作成し排出水量を求めた。また、58年度は同図A地点で暗歩末端部に設置する（200ℓドライタンク）を設置し、これに直径50mmの積算水道計を付けた電動水中ポンプを設置し排出水量を測定した。ただしこの方法による測定はポンプの排水能力に制限され、毎分0.2m³以下の場合にのみ利用した。

2) 採水

57年は第1図排水路B地点から原則として毎月3〜4回採水したが、大雨による排出水の水量に影響の予想される場合は必要に応じて採水した。

58年はB地点より約340m上流のC地点ならびに560m上流のD地点からの採水を追加した。ただしC、D地点からの採水は1〜2回の採水とした。

3) 地下水の採水法

注）採土 椫58.2・0.5m間隔
表層腐植質多湿黒ポト土（西の原統） 土壌No 0419

腐植に頼る富む黒褐色（7.5 YR 3/1）の壤土（L），発達度の細粒状構造，調査時の湿り，混。

腐植に頼る富む黒褐色（7.5 YR 2/2）の壤土（L），発達度の塊状構造，ち密度18（山中式硬度計の読み）で中，可塑性，粘着性とも中・調査時の湿り，混。

腐植の少ないに富い黄褐色（10 YR 5/4）の壤土（CL），発達度の塊状構造小孔あり，層界は明瞭，土層内に膜状の斑鉄あり，ち密度20で中，可塑性，粘着性，中，調査時の湿り，混。

腐植を欠くに富い黄褐色（10 YR 7/4）の重粘土（HC）小孔がみられ，ち密度19で中・可塑性，粘着性，強・沸き面129 cm。（ユナ層上部）

腐植を欠くに富い黄褐色（10 YR 7/2）の重粘土，ち密度17（ユナ層）

表層腐植質黒ポト土（桝統） 土壌No 0323

腐植を含む暗褐色（10 YR 3/3）の壤土（L），発達度の細粒状構造，調査時の湿り，混。

腐植含量，土色，土性は作土と同じ，発達中程度の塊状構造，小孔含む，ち密度24で大，可塑性，粘着性，中，調査時の湿り，半混・層界明瞭。

腐植あり，暗褐色（10 YR 3/4），土性質壤土（CL），発達中程度の塊状構造，小孔含む，ち密度25で大，可塑性，粘着性中，湿り半混・層界明瞭。

腐植を欠く褐色（10 YR 4/4）の層塚土（CL），発達度の塊状構造，小孔含む，ち密度22で大，可塑性，粘着性中，湿り，半混・層界明瞭。

腐植を欠くに富い黄褐色（10 YR 4/3）の層塚土（CL），発達度の塊状構造小孔あり，ち密度20中，可塑性，粘着性中，調査時の湿り，半混・層界やや明瞭。

腐植を欠く褐色（10 YR 4/6）の層塚土（CL），無構造連結状，小孔あり，可塑性，粘着性中，調査時の湿り，混・層界明瞭，沸き面182 cm。

腐植を欠く明黄褐色（10 YR 6/6）の壤土（LiC），無構造連結状，可塑性，粘着性，調査時の湿り，混，層界やや明瞭。

腐植を欠くに富い黄褐色（10 YR 7/4）の重粘土（HC），無構造連結状，小孔あり，可塑性，粘着性，（ユナ層上部）

第2図 土壌断面柱状模式図

-162-
やさい栽培畑からの肥料成分流出

排水路の水質の由来を検討するため地区内の地下水を
第図a～j地点から採水した。すなわち、1.5 mの検水
丈を用いて深さ1.5m、径1.5cmの穴をあけ、これに肉厚ビ
ニールパイプを静かに挿入し、これに第図に示す装置
で採水した。地下水位が1.5 m以下の場合はハンドオーガ
ーで深さ3 mの井戸を掘り、これから採水した。
4）水質分析法
水質分析法はJIS K0102「工場排水試験方法」に
よったが硝酸態窒素についてはイオン電極（オリオン製）
によって測定した。

Ⅲ 調査結果並びに考察
1 排出水量

地区の排水路を通じて、域外に流出した月別排出水量
及び排出水量を集水面積で除した値、すなわち流出高並
びに同地区近隣の下妻市における降雨量を併せて示すと
第3表のとおりである。

ただし、57年は5月1日から観測を開始し、排水路の
排出水が枯渇した11月末日まで観測した。58年は4月21
日から観測を開始したがこのときは既に日量約300 トン
の排出水量であった。以後排水路の排水が枯渇した12月
8日まで観測した。

地区からの年間排出水量は、57年53,602 m³、58年56,659
m³と大差のないことが認められる。流出高でみると、57
年332.6 mm、58年341.1 mmである。すなわち、2か年の
調査期間中における降雨量に対する流出高すなわち流出
率（流出高/降雨量×100）は、57年32.6％、58年34.2
％となる。

この流出率については、国土庁、建設省が推定してい
るが、これによればかなり誤差を含むとしながらも前者
は67％、後者は82％と算定され、当地区はこれに比べ
半分以下である。また、小川らは、火山灰畑モデルなど場
による4か年の試験では、降雨量の22.8％が土壌へ浸透
したとしている。さらに渋谷らは、ラインメーターによ
る試験から植生、土壌の種類、降雨量の多少によって流
出量が異なることを認め、表面流と含む流出率は40～
70％であるとしている。

以上のことから当地区の流出率は低い方に入る。
つぎに、月別排出水量について流出高でみると、57年
は6月に33.6 mm、9月に94.5 mmの2期にピークがみられ
、降雨量のピークと重なっている。これに対して、5
月、7月が低下している。

58年は、57年と比べ1か月遅れの7月と10月にピー

－163－
第3表 降雨量と排出水量

<table>
<thead>
<tr>
<th>月</th>
<th>昭和57年降雨量 (mm)</th>
<th>昭和58年降雨量 (mm)</th>
<th>昭和57年排出水量 (m³)</th>
<th>昭和58年排出水量 (m³)</th>
<th>昭和57年流入高 (mm)</th>
<th>昭和58年流入高 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>2,767</td>
<td>-</td>
<td>16.7</td>
</tr>
<tr>
<td>5</td>
<td>86</td>
<td>70</td>
<td>4,146</td>
<td>2,082</td>
<td>24.9</td>
<td>12.5</td>
</tr>
<tr>
<td>6</td>
<td>181</td>
<td>193</td>
<td>5,585</td>
<td>1,037</td>
<td>33.6</td>
<td>6.2</td>
</tr>
<tr>
<td>7</td>
<td>102</td>
<td>196</td>
<td>5,025</td>
<td>9,483</td>
<td>30.2</td>
<td>57.1</td>
</tr>
<tr>
<td>8</td>
<td>114</td>
<td>120</td>
<td>5,598</td>
<td>7,237</td>
<td>33.7</td>
<td>43.6</td>
</tr>
<tr>
<td>9</td>
<td>279</td>
<td>268</td>
<td>15,691</td>
<td>9,771</td>
<td>94.5</td>
<td>58.8</td>
</tr>
<tr>
<td>10</td>
<td>137</td>
<td>99</td>
<td>11,405</td>
<td>21,447</td>
<td>68.7</td>
<td>129.1</td>
</tr>
<tr>
<td>11</td>
<td>121</td>
<td>35</td>
<td>6,152</td>
<td>2,727</td>
<td>37.0</td>
<td>16.4</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>108</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>計</td>
<td>1,020</td>
<td>996</td>
<td>53,602</td>
<td>56,659</td>
<td>332.6</td>
<td>341.1</td>
</tr>
</tbody>
</table>

* 水戸気象台下妻市観候所

注）流出高－排出水量 / 集水面積

ークがみられそれぞれ57.1 mm・129.1 mmとなり、57年のピークを上回った。また、6月と8月が低下している。

以上のよう流出高の変動は若干の時差があるものの、降雨量と相関していることが認められる。これは集水域が比較的狭いことから比較的短時間に降雨の影響の出ることを示している。

2 排出水の水質

排水路を通じて流出した排水路末端の水質は第4表及び第5表に示すとおりである。

以下各水質項目について控え、結果を以下に示す。

pH：5.3～7.1の範囲で変動しており、年間の平均値は57年6.5、58年5.8である。2か年の測定値の変異係数をみると6.6～6.9%であり、他の水質項目中最小となっており変動幅の小さいことがうかがわれる。したがって、pHの年別変動も小さく、57年は7月以降5、6月に比べ、平均値で0.5高まった程度であり、変動の傾向もあきらかでない。

58年は、4、5、8月は6.0以上、その他はこれ以下であることが認められる。

電気伝導度（EC）：250～545 μS/cmの範囲で変動しており、57年の平均値は354 μS/cm、58年は400μS/cmであった。変異係数は2か年とも20%以下であり比較的変動幅の小さいことがうかがわれる。

月別推移について月平均値でみると、57年は5月の調査開始時から11月の排出水の枯渇まで低下の傾向にあり、58年は4月から6月まで高まり、7・8月にやや低下した。そして9月から12月まで高まることが認められた。

すなわち、57年は8月から低下したのに対して、58年は逆に9月から上昇傾向であり、変動傾向は年度によって異なることがあるかわれる。

全窒素（T-N）：57年のみであるが18.2～34.2mg/ℓで推移し、平均濃度は24.9mg/ℓである。変異係数も20%以下であり変動幅は比較的小さいことがうかがわれる。

全窒素の内訳はここではケルダール態窒素と硝酸態窒素の合量であるが、平均値でみるかぎり全窒素の99%は硝酸態窒素であり畠地排水の特徴がうかがわられる。

ケルダール態窒素（Kj-N）：57年のみの測定であるが、全測定値とも1mg/ℓ以下であり全窒素の1%以下である。すなわち当排出路の排出水は流速が緩やかであり、きわめて清澄でSS分も少ないことから、ケルダー
第4表 排出水の月別平均水質（昭．57）

<table>
<thead>
<tr>
<th>月</th>
<th>pH</th>
<th>EC ($\mu S/cm$)</th>
<th>T-N</th>
<th>Kj-N</th>
<th>NO₃-N</th>
<th>T-P</th>
<th>COD</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>Cℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6.01</td>
<td>422</td>
<td>26.0</td>
<td>0.28</td>
<td>25.7</td>
<td>-</td>
<td>3.3</td>
<td>1.3</td>
<td>35.8</td>
<td>13.4</td>
<td>-</td>
<td>51.7</td>
</tr>
<tr>
<td>6</td>
<td>6.02</td>
<td>378</td>
<td>31.5</td>
<td>0.12</td>
<td>31.3</td>
<td>-</td>
<td>9.4</td>
<td>1.1</td>
<td>31.8</td>
<td>16.6</td>
<td>7.0</td>
<td>65.7</td>
</tr>
<tr>
<td>7</td>
<td>6.46</td>
<td>368</td>
<td>27.4</td>
<td>0.22</td>
<td>27.1</td>
<td>0.04</td>
<td>8.1</td>
<td>0.9</td>
<td>40.3</td>
<td>17.8</td>
<td>7.1</td>
<td>68.3</td>
</tr>
<tr>
<td>8</td>
<td>6.51</td>
<td>366</td>
<td>22.7</td>
<td>0.19</td>
<td>22.4</td>
<td>0.02</td>
<td>10.3</td>
<td>1.3</td>
<td>32.8</td>
<td>16.2</td>
<td>6.9</td>
<td>70.4</td>
</tr>
<tr>
<td>9</td>
<td>6.67</td>
<td>314</td>
<td>20.8</td>
<td>0.34</td>
<td>20.5</td>
<td>0.02</td>
<td>7.6</td>
<td>0.7</td>
<td>25.6</td>
<td>14.2</td>
<td>6.9</td>
<td>59.0</td>
</tr>
<tr>
<td>10</td>
<td>6.58</td>
<td>310</td>
<td>25.3</td>
<td>0.30</td>
<td>25.0</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>23.8</td>
<td>14.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>6.65</td>
<td>288</td>
<td>30.9</td>
<td>0.37</td>
<td>30.5</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>24.8</td>
<td>14.2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

最高 7.10 530 34.2 0.94 34.0 0.06 14.4 2.3 45.1 19.0 7.5 72.1
最低 5.25 250 18.2 Tr 18.0 0.01 1.0 0.3 21.4 11.7 6.4 42.5
平均 6.45 354 24.9 0.27 24.6 0.02 7.8 0.9 31.1 15.3 6.9 62.8

第5表 排出水の月別平均水質（昭．58）

<table>
<thead>
<tr>
<th>月</th>
<th>日</th>
<th>水温</th>
<th>pH</th>
<th>EC ($\mu S/cm$)</th>
<th>NO₃-N</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>-</td>
<td>6.6</td>
<td>330</td>
<td>20.0</td>
<td>0.8</td>
<td>23.0</td>
<td>13.9</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>-</td>
<td>6.0</td>
<td>365</td>
<td>28.1</td>
<td>1.7</td>
<td>31.6</td>
<td>16.1</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>18.8</td>
<td>5.6</td>
<td>408</td>
<td>26.5</td>
<td>0.8</td>
<td>30.3</td>
<td>16.2</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>16.4</td>
<td>5.7</td>
<td>372</td>
<td>20.5</td>
<td>1.2</td>
<td>26.3</td>
<td>19.9</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>19.4</td>
<td>6.0</td>
<td>374</td>
<td>21.3</td>
<td>1.1</td>
<td>35.9</td>
<td>32.5</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>24.5</td>
<td>5.7</td>
<td>390</td>
<td>22.6</td>
<td>0.9</td>
<td>31.7</td>
<td>29.6</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>19.6</td>
<td>5.5</td>
<td>398</td>
<td>19.1</td>
<td>0.8</td>
<td>33.3</td>
<td>29.1</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>14.4</td>
<td>5.7</td>
<td>468</td>
<td>25.9</td>
<td>0.7</td>
<td>44.6</td>
<td>31.7</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>13.0</td>
<td>5.9</td>
<td>545</td>
<td>30.8</td>
<td>0.7</td>
<td>36.2</td>
<td>17.1</td>
</tr>
</tbody>
</table>

最高 24.5 5.7 545 30.8 2.5 54.0 36.4
最低 13.2 5.3 300 17.7 0.6 22.0 13.8
平均 5.8 400 23.3 1.0 33.3 25.0
Sd 0.4 51 4.2 0.5 8.5 7.9
CV（%） 6.9 12.8 18.0 50.0 25.5 31.6

（注）（ ）は採水・分析・測定回数
ルミノス性が少ないものと推察された。
硝酸態窒素（NO₃-N）: さきにも述べたとおり全窒素の大部分を占め、畑地排水の特徴をよく表わしている。57年は 18 ～ 34 mg/l の範囲で推移し平均濃度は 24.6 mg/l であり、58年は 17.7 ～ 30.8 mg/l、平均 23.3 mg/l と2か年とも類似しており年次による変動の小さいことが認められる。

月別の濃度変動について、月平均濃度でみると、57年は6月にピークが見られ、9月まで漸減し以後排水路の排出水が枯渇するまで上昇している。58年は5月と9月に濃度のピークがあり10月に低下している。そして、前年と同様に排出水の枯渇した12月まで上昇していることが認められる。

以上のように排出水中の硝酸態窒素濃度に変動のあることは、作物に対する施肥、降雨と呼応していることが推察され、とくに、10月以降濃度の上昇はハクサイの元肥及び追肥に起因するものと考えられる。

全リン (P): 全リンは57年7月から9月までの測定であるが、0.01 ～ 0.06 mg/l であり、平均値は0.02 mg/l のときわめて低濃度であり、濃度変動の傾向もあきらかでない。

化学的酸素要素量 (COD): 57年度のみ測定であるが、変動幅は1.0 ～ 14.4 mg/l であり、平均値は7.8 mg/l である。

新令平均濃度から変動の状況をみると 6 ～ 8 月に高まり、夏季に高まることが認められる。

加里 (K): 肥料の三要素成分の一つである加里は、0.3 ～ 2.5 mg/l でありその平均濃度は57年0.9 mg/l、58年1.0 mg/l と2か年とも同程度である。

濃度の変動状況は2か年とも5月に一つのピークがあり、以後57年は8月に、58年は7月に第二のピークが認められる。

カルシウム (Ca): カルシウムは21.4 ～ 54.0 mg/l の範囲で変動し、平均値は57年31.1 mg/l、58年33.3 mg/l と2か年ともほとんど同様であることがうかがわれる。

月別変動を示す平均濃度をみると、57年は6月に低下したものが7月に高まり濃度のピークがみられ、8月から9月に低下した。以降排水路の排出水が枯渇するまで横ばいとなっている。58年も57年と同様に7月にピークがみられ9月に低下している。しかし、57年と異なり11月に高まることが認められる。

マグネシウム (Mg): 57年は11.7 ～ 19.0 mg/l、平均値15.3 mg/l、58年13.8 ～ 36.4 mg/l、平均値25.0 mg/l であり58年の濃度が高く推移している。濃度変動については、57年はカルシウムと同様の変動を示し、7月にピークが認められる。しかし測定値の変異係数が13.2%と小さく変動幅の小さいことがうかがわれる。58年は8月にピークがみられ、変異係数は31.6%と大きく、変動幅の大きいことがうかがわれる4月の最低値13.9 mg/l は8月の最高値の約1/2となっている。

ナトリウム (Na): ナトリウムは57年6月から9月まで25回の測定であるが、6.4 ～ 7.5 mg/l の範囲で変動し平均値は6.9 mg/l、変異係数は3.6%で変動幅はきわめて小さい。

塩素 (Cl): 42.5 ～ 72.1 mg/l の範囲で推移し、平均値は62.8 mg/l である。変異係数は12.4%であり比較的変動幅の小さいことが認められる。

つきに、この排出水が排水路の下流から下流への流れ過程における濃度の変動を知るため、上流2か所から10回採水し各種水質項目を分析・測定した。その結果は第6表に示すとおりである。

これから各水質項目の平均値をみると、pHは流下過程でわずかに低下していることが認められる。pH以外の項目では流下過程で増加することがうかがわれ、なかでも硝酸態窒素は排水路末端の平均濃度が上流の濃度の2倍以上になっている。

以上流下過程で濃度の高くなることについては、集水域内の土地利用状況との関係があげられる。すなわち、上流部は林地が多く、中、下流部は林地がないことから、中・下流部で施肥の影響を強く受けたことによるものと推察される。

つぎに、一時的な降雨と水質変動について知るため、57年7月と9月の2回にわたり、数日間連続して採水し、その水質をみた。その結果は第7表及び第8表に示すとおりである。
<table>
<thead>
<tr>
<th>採水月日</th>
<th>pH</th>
<th>EC（μS/cm）</th>
<th>NO₃-N</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>上</td>
<td>中</td>
<td>下</td>
<td>上</td>
<td>中</td>
<td>下</td>
</tr>
<tr>
<td>4.21</td>
<td>6.7</td>
<td>6.1</td>
<td>6.5</td>
<td>140</td>
<td>325</td>
<td>365</td>
</tr>
<tr>
<td>5.4</td>
<td>6.1</td>
<td>5.7</td>
<td>5.5</td>
<td>200</td>
<td>305</td>
<td>370</td>
</tr>
<tr>
<td>6.29</td>
<td>6.1</td>
<td>5.7</td>
<td>6.0</td>
<td>435</td>
<td>360</td>
<td>375</td>
</tr>
<tr>
<td>7.8</td>
<td>5.6</td>
<td>5.5</td>
<td>5.5</td>
<td>390</td>
<td>355</td>
<td>380</td>
</tr>
<tr>
<td>14</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>335</td>
<td>335</td>
<td>370</td>
</tr>
<tr>
<td>8.24</td>
<td>6.2</td>
<td>6.4</td>
<td>5.6</td>
<td>340</td>
<td>165</td>
<td>365</td>
</tr>
<tr>
<td>9.19</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>345</td>
<td>340</td>
<td>390</td>
</tr>
<tr>
<td>10.14</td>
<td>5.5</td>
<td>5.5</td>
<td>5.3</td>
<td>325</td>
<td>345</td>
<td>385</td>
</tr>
<tr>
<td>11.14</td>
<td>5.9</td>
<td>6.1</td>
<td>5.6</td>
<td>305</td>
<td>315</td>
<td>480</td>
</tr>
<tr>
<td>25</td>
<td>5.7</td>
<td>6.0</td>
<td>5.6</td>
<td>280</td>
<td>305</td>
<td>495</td>
</tr>
<tr>
<td>平均</td>
<td>5.9</td>
<td>5.8</td>
<td>5.7</td>
<td>309</td>
<td>318</td>
<td>398</td>
</tr>
</tbody>
</table>

（注）上：上流（第１図①），中：中流（同②），下：下流（同③）

第7表 降雨後の排水量と水質（昭. 57）

<table>
<thead>
<tr>
<th>月・日</th>
<th>風雨量（mm）</th>
<th>半旬排水量（t）</th>
<th>EC（μS/cm）</th>
<th>NO₃-N（mg/l）</th>
<th>T-P（mg/l）</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.14</td>
<td></td>
<td></td>
<td>330</td>
<td>29.0</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>14</td>
<td>933</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>25</td>
<td></td>
<td>310</td>
<td>22.0</td>
<td>0.055</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td></td>
<td>410</td>
<td>29.0</td>
<td>0.020</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td></td>
<td>350</td>
<td>25.0</td>
<td>0.020</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td></td>
<td>380</td>
<td>27.0</td>
<td>0.011</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td></td>
<td>400</td>
<td>29.0</td>
<td>0.020</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>1,085</td>
<td>400</td>
<td>29.0</td>
<td>0.020</td>
</tr>
</tbody>
</table>

第8表 降雨後の排水量と水質（昭. 57）

<table>
<thead>
<tr>
<th>月・日</th>
<th>風雨量（mm）</th>
<th>半旬排水量（t）</th>
<th>EC（μS/cm）</th>
<th>NO₃-N（mg/l）</th>
<th>T-P（mg/l）</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>295</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>20.4</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>20.0</td>
</tr>
<tr>
<td>10</td>
<td>52</td>
<td>1,037</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>325</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.5</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>1,037</td>
<td>315</td>
<td>20.5</td>
<td>0.013</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.6</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>325</td>
<td></td>
<td></td>
<td>20.4</td>
</tr>
<tr>
<td>20</td>
<td>18</td>
<td>864</td>
<td>295</td>
<td>20.5</td>
<td></td>
</tr>
</tbody>
</table>
これによれば、7月17日から26日まで69mmの降水量があり、さらに28日から31日まで6mmの雨量である。この場合における排出水量は第5半旬で933トン、第6半旬1,085トンであり大差がみられず、水質も7月14日の水質と大差は認められなかった。また、9月4日から12日までの9日間に196mmの豪雨があった場合についてみると、排出水量は降雨前後とも大きな変動は認められず、水質についても大きな変動はみられない。

したがって、このような集水域における水質の変動はきわめて緩やかであり、一時的降雨による水質への影響はきわめて小さいものと思われる。

3 集水域内の地下水水質

排水路における排出水が畳地の地下水に由来するものであることを確かめるため、第1図に示す畳井戸1、2から地下水を採水し分析・測定を行った。その結果は第9表～第10表に示すとおりである。

57年に実施した結果（第9表）によれば、PHは4.9～7.5の範囲であり平均6.4である。これは57年の排出水の平均値と同等である。また、ナトリウムは平均6.6mg/l、塩素は61.5mg/lであり、排出水の平均値と同等である。

これ以外の項目については、排出水の平均濃度より、30～50%下まわっていることが認められる。

つきに、水質項目間の相關についてみると、排出水・地下水ともカルシウムとマグネシウムの相関が高く、これの濃度比を計算すると、地下水は0.026、排出水は0.033が得られる。また、ナトリウム、塩素比についてみると地下水0.106、排出水0.109となりいずれもきわめて類似していることがうかがわれ、畳地の地下水と排出水は濃度が異っていても同質のものと判断される。

<table>
<thead>
<tr>
<th>月</th>
<th>pH</th>
<th>EC（μS/cm）</th>
<th>T-N</th>
<th>K-N</th>
<th>NO₃-N</th>
<th>PO₄-P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5.36</td>
<td>315</td>
<td>17.0</td>
<td>Tr</td>
<td>17.0</td>
<td>-</td>
<td>2.6</td>
<td>26.6</td>
<td>7.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>5.99</td>
<td>272</td>
<td>6.7</td>
<td>0.3</td>
<td>6.5</td>
<td>0.007</td>
<td>1.3</td>
<td>23.9</td>
<td>9.8</td>
<td>6.8</td>
<td>60.3</td>
</tr>
<tr>
<td>7</td>
<td>6.45</td>
<td>260</td>
<td>7.0</td>
<td>0.1</td>
<td>6.9</td>
<td>0.007</td>
<td>1.3</td>
<td>20.4</td>
<td>9.4</td>
<td>6.3</td>
<td>62.2</td>
</tr>
<tr>
<td>8</td>
<td>6.66</td>
<td>278</td>
<td>18.0</td>
<td>1.3</td>
<td>16.7</td>
<td>0.004</td>
<td>1.2</td>
<td>22.4</td>
<td>12.4</td>
<td>6.7</td>
<td>66.2</td>
</tr>
<tr>
<td>9</td>
<td>6.77</td>
<td>295</td>
<td>14.9</td>
<td>0.2</td>
<td>14.7</td>
<td>0.007</td>
<td>1.2</td>
<td>22.6</td>
<td>12.5</td>
<td>6.5</td>
<td>59.6</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>26.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

最 高 7.55 320 20.8 2.1 28.0 0.009 2.6 26.6 16.3 7.0 69.2

最低 4.92 230 1.9 Tr 1.9 Tr 0.9 16.6 4.5 5.8 54.3

平 均 6.39 286 13.2 0.5 14.4 0.006 1.3 22.7 11.2 6.6 61.5

Sd 0.75 28 6.6 0.6 7.6 0.002 0.4 3.7 3.1 0.4 4.4

CV（%） 11.8 9.9 50.2 120.0 52.8 33.3 30.7 16.3 27.6 6.0 7.2

（注）（）は採水・分析測定回数、深さ1.5 m
第10表 深さ別畑地の地下水水質（昭. 58）（mg / l）

<table>
<thead>
<tr>
<th>月</th>
<th>水温（℃）</th>
<th>pH</th>
<th>EC（μS/cm）</th>
<th>NO₃-N</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.5 m</td>
<td>4 (1)</td>
<td>-</td>
<td>5.3</td>
<td>315</td>
<td>16.7</td>
<td>2.6</td>
</tr>
<tr>
<td>2</td>
<td>5 (1)</td>
<td>-</td>
<td>4.6</td>
<td>345</td>
<td>18.7</td>
<td>2.2</td>
<td>28.2</td>
</tr>
<tr>
<td>3</td>
<td>6 (1)</td>
<td>17.8</td>
<td>5.0</td>
<td>345</td>
<td>19.6</td>
<td>2.3</td>
<td>28.9</td>
</tr>
<tr>
<td>4</td>
<td>7 (1)</td>
<td>17.7</td>
<td>5.0</td>
<td>345</td>
<td>19.6</td>
<td>2.4</td>
<td>32.8</td>
</tr>
<tr>
<td>5</td>
<td>8 (1)</td>
<td>20.0</td>
<td>5.1</td>
<td>305</td>
<td>17.0</td>
<td>2.0</td>
<td>28.7</td>
</tr>
<tr>
<td>6</td>
<td>9 (1)</td>
<td>20.2</td>
<td>5.1</td>
<td>353</td>
<td>19.0</td>
<td>1.1</td>
<td>27.9</td>
</tr>
<tr>
<td>7</td>
<td>10 (1)</td>
<td>21.0</td>
<td>4.9</td>
<td>370</td>
<td>17.8</td>
<td>0.8</td>
<td>26.9</td>
</tr>
<tr>
<td>8</td>
<td>11 (1)</td>
<td>18.3</td>
<td>5.4</td>
<td>365</td>
<td>16.6</td>
<td>0.9</td>
<td>30.2</td>
</tr>
</tbody>
</table>

平均 | 18.9 | 5.0 | 343 | 18.5 | 1.8 | 29.6 | 18.9 |
Sd | 1.4 | 0.2 | 19 | 1.3 | 0.7 | 3.0 | 7.6 |
CV（%） | 7.4 | 4.0 | 5.5 | 7.0 | 38.9 | 10.1 | 40.2 |

（注）（）は採水、分析、測定回数

58年同地点に深さ2 mの井戸を新設し、深さの違いによる水質の違いを示した（第10表）これによれば、いずれの項目とも大差は認められず、変動幅も類似していることから2 m以内の浅層地下水の場合は深さによる水質の違いは認められない。

つぎに、地下水の排水路への流動過程における水質の変動をみるため、第1図に示す2系列、すなわち畑地下水a ~ e、f ~ j地点について調査した。その結果は第11表及び第12表に示すとおりである。

第11表 畑地の地下水水質（mg / l）

<table>
<thead>
<tr>
<th>採水</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>月日</td>
<td>pH</td>
<td>EC（μS/cm）</td>
<td>NO₃-N</td>
</tr>
<tr>
<td>1.74</td>
<td>5.6</td>
<td>145</td>
<td>4.3</td>
</tr>
<tr>
<td>8.24</td>
<td>5.7</td>
<td>140</td>
<td>4.9</td>
</tr>
<tr>
<td>9.7</td>
<td>5.1</td>
<td>100</td>
<td>1.8</td>
</tr>
<tr>
<td>9.19</td>
<td>5.7</td>
<td>135</td>
<td>2.7</td>
</tr>
<tr>
<td>10.14</td>
<td>5.7</td>
<td>155</td>
<td>3.2</td>
</tr>
<tr>
<td>11.14</td>
<td>5.6</td>
<td>135</td>
<td>2.7</td>
</tr>
</tbody>
</table>

平均 | 5.6 | 135 | 3.3 | 2.2 | 6.3 | 6.7 |

<table>
<thead>
<tr>
<th>採水</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>月日</td>
<td>pH</td>
<td>EC（μS/cm）</td>
</tr>
<tr>
<td>7.14</td>
<td>5.4</td>
<td>275</td>
</tr>
<tr>
<td>8.24</td>
<td>5.3</td>
<td>310</td>
</tr>
<tr>
<td>9.7</td>
<td>5.3</td>
<td>300</td>
</tr>
<tr>
<td>9.19</td>
<td>5.2</td>
<td>295</td>
</tr>
<tr>
<td>10.14</td>
<td>5.2</td>
<td>320</td>
</tr>
<tr>
<td>11.14</td>
<td>5.2</td>
<td>305</td>
</tr>
</tbody>
</table>

平均 | 5.3 | 301 | 17.9 | 0.5 | 22.6 | 23.9 |

－169－
第 12 表 畑地の地下水の水質

<table>
<thead>
<tr>
<th>採水</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>月日</td>
<td>pH</td>
<td>EC (μS/cm)</td>
<td>NO₃-N</td>
</tr>
<tr>
<td>8.24</td>
<td>5.8</td>
<td>565</td>
<td>30.2</td>
</tr>
<tr>
<td>9.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

第 13 表 林地の地下水水質

<table>
<thead>
<tr>
<th>採水位置</th>
<th>-1.5 m</th>
<th>-3.0 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>水質項目</td>
<td>水温 (℃)</td>
<td>pH</td>
</tr>
<tr>
<td>最高</td>
<td>18.5</td>
<td>6.1</td>
</tr>
<tr>
<td>最低</td>
<td>15.8</td>
<td>5.5</td>
</tr>
<tr>
<td>林地 1 平均</td>
<td>17.1</td>
<td>5.7</td>
</tr>
<tr>
<td>Sd</td>
<td>1.4</td>
<td>0.3</td>
</tr>
<tr>
<td>CV (%)</td>
<td>7.9</td>
<td>4.6</td>
</tr>
<tr>
<td>最高</td>
<td>16.7</td>
<td>5.8</td>
</tr>
<tr>
<td>最低</td>
<td>15.1</td>
<td>5.3</td>
</tr>
<tr>
<td>林地 2 平均</td>
<td>5.5</td>
<td>128</td>
</tr>
<tr>
<td>Sd</td>
<td>0.2</td>
<td>62.1</td>
</tr>
<tr>
<td>CV (%)</td>
<td>3.4</td>
<td>48.5</td>
</tr>
<tr>
<td>最高</td>
<td>19.0</td>
<td>5.0</td>
</tr>
<tr>
<td>最低</td>
<td>15.2</td>
<td>4.8</td>
</tr>
<tr>
<td>林地 3 平均</td>
<td>4.9</td>
<td>534</td>
</tr>
<tr>
<td>Sd</td>
<td>0.1</td>
<td>101.5</td>
</tr>
<tr>
<td>CV (%)</td>
<td>1.7</td>
<td>19.0</td>
</tr>
<tr>
<td>最高</td>
<td>19.6</td>
<td>5.3</td>
</tr>
<tr>
<td>最低</td>
<td>15.6</td>
<td>4.8</td>
</tr>
<tr>
<td>林地 4 平均</td>
<td>5.1</td>
<td>347</td>
</tr>
<tr>
<td>Sd</td>
<td>0.2</td>
<td>64.3</td>
</tr>
<tr>
<td>CV (%)</td>
<td>3.7</td>
<td>17.2</td>
</tr>
</tbody>
</table>
やさい栽培畑からの肥料成分の流出

流動過程でわずかに低下する傾向がみられ、ECは逆に135 μS/cmから346 μS/cmに高まっている。加里は上流より下流の方が低下し、硝酸態窒素、カルシウム、マグネシウムはECと同様にわずかながら高まる傾向が認められる。

上記に示すように、pHは上流-下流とも差はみられず、加里を除く他の成分は、流下過程でa～e系列と同様にわずかから高まる傾向がうかがわれる。また、f～j系列はa～e系列に比べ、各成分とも濃度が高く、同一集水域内であっても場所によって水質はかなり異なることが認められる。しかしながら、さきのカルシウム・マグネシウム比及び硝酸態窒素・カルシウム比をみるとa～e系列、排出水と類似しており、いずれも同質とみることができ排出水の由来をものがたっている。

つぎに同一集水域内の各林地の地下水についても調査した。すなわち第1図にある比較的林地の速な流れのある2箇所と3方向が畑地となっている林地について、昭和58年6月～11月まで5回～10回採水しその水質を調査した。

その結果は第13表のとおりである。この結果から、林地1・2の地下水中の成分は林地3・4の地点に比べ濃度の低いことがうかがわれる。ときに林地3・4の水質は畑地の地下水と同程度であり、畑地からの地下水流動のあることが示唆される。

さらに、カルシウム・マグネシウム比及び硝酸態窒素・カルシウム比についてみると、林地1・2はそれぞれ0.54～0.85、1.10～1.21となり林地3・4は1.24～1.85、0.50～0.60であり、排出水の1.3～2.0、0.6～0.7に比べ林地1・2の水質があきらかに異なることがうかがわれる。

そして林地3・4の水質は畑地の水質そのものと言える。

また、水質を深さ別にみると、林地1・2では深い程成分濃度の高い傾向がうかがわれ、林地3・4ではその差はあきらかでない。

肥料成分の収支

集水域における肥料成分すなわち窒素、リン、加里について収支を知るためには、これら成分のINPUT及びOUTPUTを明確にする必要がある。

ここでINPUTは畑に対する施肥量と降雨中に含まれる肥料成分量である。

OUTPUTは収穫物による吸収、排出水中に溶解して流出するものの、地下水への深部浸透、脱窒による大気中への拡散などである。しかしここでは排出水に溶解して流出した成分のみOUTPUTとして検討することとする。

INPUTの施肥と降雨についてまとめる第14表及び第15表に示すとおりである。

第14表 各作物の作付面積と施肥量

<table>
<thead>
<tr>
<th>作 物</th>
<th>作付面積（千יכ）</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>作付面積（千יכ）</th>
<th>N</th>
<th>P</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>メロン</td>
<td>84.506</td>
<td>1,436.6</td>
<td>735.2</td>
<td>1,538.0</td>
<td>99.548</td>
<td>1,692.3</td>
<td>866.1</td>
<td>1,811.8</td>
</tr>
<tr>
<td>スイカ</td>
<td>34.349</td>
<td>515.2</td>
<td>223.3</td>
<td>429.4</td>
<td>22.985</td>
<td>344.8</td>
<td>149.4</td>
<td>287.3</td>
</tr>
<tr>
<td>ゴボウ</td>
<td>6.492</td>
<td>129.8</td>
<td>42.2</td>
<td>107.8</td>
<td>2.814</td>
<td>56.3</td>
<td>18.3</td>
<td>46.7</td>
</tr>
<tr>
<td>ハクサイ</td>
<td>118.855</td>
<td>3,565.7</td>
<td>1,034.0</td>
<td>2,971.4</td>
<td>122.533</td>
<td>3,676.0</td>
<td>1,066.0</td>
<td>3,063.3</td>
</tr>
<tr>
<td>計</td>
<td>125.347</td>
<td>5,647.3</td>
<td>2,034.7</td>
<td>5,046.6</td>
<td>125.347</td>
<td>5,769.4</td>
<td>2,099.8</td>
<td>5,209.1</td>
</tr>
</tbody>
</table>

10a当平均施肥量 - | 30.8 | 16.2 | 40.3 | - | 46.0 | 16.8 | 41.6 |

（注）施肥量は酸化物表示（P₂O₅, K₂O）が一般的であるが、水質が元素表示であるのでこれに換算して表示した。

-171-
第 15 表 降雨量と降雨負荷

<table>
<thead>
<tr>
<th>降雨量*(mm)</th>
<th>昭. 57</th>
<th>昭. 58</th>
</tr>
</thead>
<tbody>
<tr>
<td>降雨量</td>
<td>1.020</td>
<td>996</td>
</tr>
<tr>
<td>雨 T-N</td>
<td>1.16</td>
<td>1.14</td>
</tr>
<tr>
<td>頻繁T-P</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>荷(10kg)K</td>
<td>0.22</td>
<td>0.22</td>
</tr>
</tbody>
</table>

* 期間昭 57 年 5 月 1 日～11月 30 日 昭 58 年 4 月 20 日～12月 8 日
** 降雨水の水質(μg/ℓ) T-N: 1.14, T-P: 0.00, K: 0.22

なお、各作物の施肥量は 2・3 の耕作者からの聞き取り調査の結果、作付体系のなかで施肥される肥料成分の合量が県種類基準値、近似していることを、基準値を引用することとした。これと作付作物の面積から施肥量を求めた。

以上のような条件のもとを当該水堀の畑 125ha に、57年は窒素 5,647.3kg (30.8kg/10a)、リン 2,034.7kg (16.2 kg/10a)、カリ 5,046.6kg (40.3kg/10a)の肥料成分が施付けられることになる。58年は57年に比べ、スイカが減少し、メロンの作付が増加するのに伴ない窒素成分の施肥量が増し 5,769.4kg (46.0kg/10a) となり、リンとカリは57年と同様であった。

降雨からの肥料成分の流入は、57年は窒素 193.1kg、カリ 37.3kg であり、58年は、窒素 188.6kg、カリ 36.4 kg であった。

つきに、排出水に溶解して流出した肥料成分を排出水量と平均水質から算出し、各水質項目の流出量を示すと第16表に示すとおりである。

これによって、窒素は57年、58年とも 1,200kg程度であり、リンは1.2kg (57年) と窒素にくらべてわめて少ないことがうかがわれる。

加里は57年は 45.6kg、58年は 52.7kg の流出量であり、リンについて少ないことが認められる。
カルシウムは1,600kg前後の大規模であり肥料成分中最大であり、土壌中での移動・流出が容易であることをものがっている。

マグネシウムは、57年は772kgが58年では約2倍の1,462kgに増加しており、年度による変動の大きいことがうかがわれる。すなわち、58年の排出量が多かった

第 16 表 肥料成分の流出量

<table>
<thead>
<tr>
<th>月</th>
<th>昭. 57</th>
<th>昭. 58</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>4</td>
<td>108.3</td>
<td>0.09</td>
</tr>
<tr>
<td>5</td>
<td>144.1</td>
<td>0.13</td>
</tr>
<tr>
<td>6</td>
<td>113.1</td>
<td>0.11</td>
</tr>
<tr>
<td>7</td>
<td>110.8</td>
<td>0.12</td>
</tr>
<tr>
<td>8</td>
<td>331.1</td>
<td>0.36</td>
</tr>
<tr>
<td>9</td>
<td>286.3</td>
<td>0.26</td>
</tr>
<tr>
<td>10</td>
<td>190.7</td>
<td>0.14</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>計</td>
<td>1,284.4</td>
<td>1.21</td>
</tr>
</tbody>
</table>
ことは、排出水の平均濃度が約10 mg/lとなったことに
よるものである。

以上肥料成分の流入（INPUT）、流出（OUTPUT）につ
いて述べたが、これらのうちから肥料の三要素の収支に
ついてまとると第17表のとおりである。

これによれば、57年は、窒素の流入は降雨と施肥量で
5,840.4 kgあり、排出量は1,284.4 kgである。降雨から
の流入窒素を差し引いた差し引き排出量は1,091.3 kgと
なり、これを施肥窒素の溶脱率とみなすと、施肥窒素に
占める割合、すなわち、溶脱率は19.3％となる。

58年は流入量が57年に比べやや多くなったが、排出
量は前年とほぼ同様の1,197.2 kgである。差し引き排出
量は1,008.6 kgとなり57年よりやや少なく、溶脱率は
17.5％となる。しかし、本調査の期間は57年が5月1日
～11月末日、58年が4月20日～12月8日にあり両年と
も調査開始前の排出量が欠落していることになる。

また、地域には40,720 m²の林地がありこれらの窒素
の負荷を見積ってない。そこで調査開始までの窒素の
排出量を推定するため、各調査年の降雨量に対する流出
高の割合（流出高/降雨量）をすなわち、57年は1月か
ら4月までの降雨量の32.6％、58年は1月から4月19日
までの降雨量の34.2％を排水量として見積った。さらに
調査期間の水質の平圧値を用いて排出窒素を計算した。

また、林地からの窒素負荷量を10 a当り0.36 kgとし
て計算すると第18表に示すとおりである。

これによれば、調査期間外の排出窒素は、57年295.2
kg、58年は70.3 kgとなった。57年の排出量が58年
に比べ約4倍になったが、これは57年の降雨量が、58年
の降雨量の約4倍であったことによるものである。

つきに、これらの試算値を調査期間の排出量を加算し
これから林地の負荷量14.7 kg及び降雨からの流入量を差
し引いた、畑地からの負荷量を試算すると、57年1,330.3
kg、58年1,054.2 kgとなった。これらの排出量は施肥窒
素に対して、57年27.7％、58年21.7％となる。

小川らは火山灰地のモデルは場で各種作物を栽培し
窒素の溶脱率は16～24％であったとしている。また、
田浦らは農地からの窒素の流出について種々とりまとめ
っているが、「畑地からの溶脱率はさまざまな条件の下
で大きく変動しており、個々的な数値で表現することは
できない」としているが、溶脱率は施肥量との関係が強
いとしている。そして、O E C Dの報告書等の紹介で窒
素の溶脱率を10～25％及び30％など提示しており、「それ
はあくまでも“標準的”な値であることに留意すべきで
ある」としている。

第17表 肥料成分の収支 (kg)

<table>
<thead>
<tr>
<th>項 目</th>
<th>昭. 57</th>
<th>昭. 58</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>降雨 (A)</td>
<td>193.1</td>
<td>-</td>
</tr>
<tr>
<td>INPUT</td>
<td>5,647.3</td>
<td>2,034.7</td>
</tr>
<tr>
<td>計 (B)</td>
<td>5,840.4</td>
<td>2,034.7</td>
</tr>
<tr>
<td>OUTPUT 流 出 量 (C)</td>
<td>1,284.4</td>
<td>1.2</td>
</tr>
<tr>
<td>差し引き排出量（C-A）</td>
<td>1,091.3</td>
<td>1.2</td>
</tr>
<tr>
<td>10 a当り差し引き排出量</td>
<td>8.71</td>
<td>0.01</td>
</tr>
</tbody>
</table>

* 差し引き排出量÷125.347（畑面積）林地からの負荷を見積らない。
表 18 窒素の貯留量と排出率（kg）

<table>
<thead>
<tr>
<th>項目</th>
<th>昭. 57</th>
<th>昭. 58</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査期間の貯留量（林床含）（a）</td>
<td>1,284.8</td>
<td>1,197.2</td>
</tr>
<tr>
<td>調査期間外の貯留量（減）（b）</td>
<td>295.2</td>
<td>70.3</td>
</tr>
<tr>
<td>年間貯留量（a + b）（c）</td>
<td>1,579.6</td>
<td>1,267.5</td>
</tr>
<tr>
<td>降雨負荷量（d）</td>
<td>234.6</td>
<td>198.6</td>
</tr>
<tr>
<td>林床からの貯留量（e）</td>
<td>14.7</td>
<td>14.7</td>
</tr>
<tr>
<td>稲床からの貯留量（c - (d+e)）（f）</td>
<td>1,330.3</td>
<td>1,054.2</td>
</tr>
<tr>
<td>施肥排出率（f / 施肥量）（％）</td>
<td>27.7</td>
<td>21.7</td>
</tr>
</tbody>
</table>

*第17表 INPUT施肥の項

以上のことを考慮して当集水域における窒素の実態率は「標準的」と言えよう。

リンの排出については、57年の水の調査であるが、5月から11月までの12kg水としたという。このことから、排出水の中のリン濃度がきわめて低いことによるものであり、施肥リンの土地中での移動がほとんどないことを裏書きしている。またこのことは、土壌分析の結果表層ほどリンの蓄積していることが認められていることから、土地中での移動の少ないことがうかがえる。

田園もしくは稲床からのリンの流出については「リンは土壌に吸着されていき、窒素はほとんど流出しない」とし、リンの排出が問題になる場合は多肥の野菜畑や土壌浸食の場合であるとされている。

加里については、施肥量が2か年とも5,000kg以上であるが、排出量は57年45.6kg、58年52.7kgとなり差し引き排出量は57年8.3kg、58年16.3kgとなりリンについては少ないことが認められる。

したがって、加里の溶出率は2か年とも1％以下となり、早朝から各試験結果をとりまとめた結果と符合していることが認められた。

N 摘 要

本県の代表的やさい栽培畑から肥料成分の流出について

て、昭和57年及び58年の2か年間にわたって調査した。その結果を要約すると以下のとおりである。

1.集水域（16.6ha）から流出した水量は53,000～57,000トンであり、降雨量に対する流出率（流出量/降雨量）は32.6～34.2％であった。

2.排出水の溶存成分濃度は塩素＞カリウム＞硝酸態窒素＞マグネシウムであり、三要素成分であるリンは0.02mg/l、加里は1mg/l程度で他の成分に比べきわめて低濃度であった。

3.排出水の溶存成分は、排出路を上流から下流へ排出路を下流する過程で濃度の高まることが認められ、周辺の土地利用の影響を強く受けていることがうかがわれた。

4.集水域内の浄流地下水の水質は排出水の水質と同様であることがうかがわれた。

5.同集水域からの肥料成分の排出量は、窒素は1,200kg/年前後であり施肥量に対して21～28％と推定された。リンについては12kg/年であり火山灰渕からの流出のきわめて小さいことが確認された。加里についても50kg/年前後であり施肥量に対して1％以下であることが認められた。

謝 辞

本調査は、環境庁委託による土壌環境保全基礎調査の一環として実施したものであり、調査の推進にあたり環境保全基礎調査検討委員会、元長巌石川昌男博士、元場長関口計士博士の各位には有益な指導・助言を賜りました。また現場長松田昭博士、副場長谷芳明氏にはご多忙にもかかわらずご校閲を賜りました。さらに現地調査にあたり、場所の選定、測量、土壌調査、採水・分析等々の作業を分担していただいた現環境部長平山力氏、現作業技術部長小林登氏、主任研究員小川吉雄博士（現土壤肥料部）、桜井徹雄技師（現下水道庁環境改善普及所）、新家忠也技師（現管理部）、水本栄氏（八千代町）各位の協力なしに本調査の遂行はできなかった。記して厚くお礼を申し上げる次第である。
引 用 文 献
1）茨城県環境局：霞ヶ浦の水質処理の方策について（茨城県水質審議会中間答申（1981））
2）小川吉雄，石川実，吉原資，石川昌男：畑地からの窒素の流出に関する研究：茨城農試特研報 № 4
（1979）
3）森田勇編：工業排水試験方法：日本規格協会（1981）
4）福岡正己編：地下水ハンドブック：建設産業調査会，P 22（1979）
5）渋谷勤治郎，上村春美，坂西研二：斜面ライシメー
ターによる水収支と土壌浸食に関する実験的研究：
農土試報 № 21，P 50（1981）
6）茨城農試：土壌環境保全基礎調査報告書（竜竜地区）（1981）
7）茨城県農林水産局：やさい耕種基準（1982）
8）田淵俊雄，高村義美：集水域からの窒素・リンの流
出：東京大学出版会（1985）
9）早瀬達郎，安藤淳平，越野正義編：肥料と環境保全，
P 168：ソフトサイエンス社（1976）
牧野における肥料成分の動向と収支

青木 武・平山 力

On the Behaviour and Balance of Fertilizer
Nutrients in the Grazing Pasture
Takeshi AOKI, Chikara HIRAYAMA

牧野における栄養塩類の動向と収支をあきらかにするため、大宮町営牧場内の放牧地10.5haを対象として、昭和59年6月から60年12月まで、窒素、リンを中心に調査検討した。

その結果、対象地区からの流出水（表面流出水+暗きょ流出水、以下同じ。）中の窒素濃度は、平常時の場合、平均1.62 ppm、リン濃度は0.01 ppm以下であったが、施肥直後の降雨増水時には、窒素、リン濃度いずれも一時的に高い値を示した。

栄養塩類の収支については、施肥量および降雨にともなう流入量に対し、流出水中ともなう流出量は、窒素では11.3%となり、リンでは0.3%となった。カルシウムおよびマグネシウムでは、流出量が流入量を上回った。

ここで調査対象としたような、山林を造成した傾斜地の放牧地では、降雨時には一時的に多量の表面流出水があり、これにともなう窒素、リンの流出負荷は高く、降雨時の一時的な増水が地区の栄養塩類の動向と収支に大きく関与し得ることが示唆された。

Ⅰ 緒 言

湖沼等閉鎖系水域の富栄養化の一因として、農耕地からの肥料成分の流出による影響があげられ、これまで水田、畑地を中心に調査研究がすすめられてきた。これによると、水田では強制落水等が行われる田植時に肥料成分の流出のあることが明らかにされた。1)，2) また、畑地でも肥料成分の約20〜30%が水系外に流出していることが明らかにされ、3) 結果的に周辺河川および湖沼等の発生負荷として影響を及ぼしていることが示唆されている。

一方、放牧地についてみると、水田、畑地とは異なり常に牧草で被覆され、そのうえ放牧牛による動物要因が関与していること、地理的にも比較的急な傾斜地に位置した例が多い。これらの立地条件等が、栄養塩類の動向と収支に密接な関係のあることが予想される。これを明らかにすることは、農耕地からの肥料成分の流出機構を地形との連鎖系で体系的にみて行く場合に重要な意味があると考えられる。放牧地における栄養塩類の動向と収支については、現在阿蘇地区の調査報告4)がみられる程度で、その例は極めて少ない。

そこで、本調査では、県北丘陵地に造成された大宮町営牧場のうち、集水域として水収支等の調査が可能とみられる地区を対象として、その地区内から流出する表面および暗きょ流出水の水量と水質、蒸発散水等を調査し、栄養塩類の動向と収支を検討した。その結果、いくつかの知見が得られたので報告する。

なお、この調査は、環境庁からの委託により「土地環境保全基礎調査」の一環として、昭和59〜60年の2か年間実施したものであり、本報告は、これらの概要をとりまとめたものである。
Ⅱ 調査方法

1) 調査地区的概要

調査地区は、那珂郡大宮町若林に、昭和46年から51年にかけて、山林を造成した町営牧場（53.76ha）内に位置し、なかでも地形的にみて水収支等の調査が可能とみられる第1図に示す集水域10.5haの範囲を対象とした。

本地区の土地条件は、県北部新たに下取りの最南端部で標高80〜120mの丘陵地帯にあり、地質は第三紀系の基岩上部に1〜3mの火山灰ローム層が堆積している。基岩とローム層の中間には、円・角礫を含む砂礫層も一部にみられる。

表層土壇は、淡色黒ボク土（大河内統）と礫質褐色森林土（千原統）の2つに区分され、これらの代表土壇の化性性は、第1表のとおりである。土壇の分布状況をみると、礫質褐色森林土が大部分（90%）を占め、淡色黒ボク土はわずかである。前者は、草地造成の際の造成土壇に該当し、切盛にともなう土壇の移動による影響を大きく受けており、表層から凹・角礫を含み、土壇の密度も大きい。後者は、造成にともなう土壇の移動の少ない本来の自然土壇で、土壇の密度も大きいが礫の混入はほとんどない。代表土壇の化性性は、両土壇とも酸性の傾向が目立つ、リン酸吸収係数は高く、土壇養分は0〜12cmの極く表層部分に多い。

牧場の土地利用は、放牧地30.3ha、採草地11.4ha、自然林12.00ha、施設0.89haとなっているが、ここで調査対象とした10.5haの範囲は放牧地であり、ほとんどが草地で、松および雑木林による林地の形成か所は認め

第1図 調査地区的概要
牧野における肥料成分の動向と収支

第1表 代表土壌の化学性（乾土100 g当たり）

<table>
<thead>
<tr>
<th>土壌層位</th>
<th>厚 度 (cm)</th>
<th>pH</th>
<th>CEC</th>
<th>T-N (%)</th>
<th>T-C (%)</th>
<th>C/N</th>
<th>有効態</th>
<th>置換性</th>
<th>リン酸</th>
</tr>
</thead>
<tbody>
<tr>
<td>淡色</td>
<td>1</td>
<td>0〜12</td>
<td>5.6</td>
<td>4.5</td>
<td>18.6</td>
<td>0.24</td>
<td>3.60</td>
<td>15.0</td>
<td>6.19</td>
</tr>
<tr>
<td>黒ボク土</td>
<td>2</td>
<td>12〜22</td>
<td>5.6</td>
<td>4.2</td>
<td>22.3</td>
<td>0.05</td>
<td>2.12</td>
<td>42.4</td>
<td>3.65</td>
</tr>
<tr>
<td>(大河内統)</td>
<td>3</td>
<td>22〜38</td>
<td>5.7</td>
<td>4.2</td>
<td>23.4</td>
<td>0.04</td>
<td>0.90</td>
<td>22.5</td>
<td>1.55</td>
</tr>
<tr>
<td>森林土</td>
<td>1</td>
<td>0〜11</td>
<td>5.8</td>
<td>4.6</td>
<td>15.7</td>
<td>0.46</td>
<td>5.84</td>
<td>12.7</td>
<td>10.00</td>
</tr>
<tr>
<td>(千原統)</td>
<td>2</td>
<td>11〜30</td>
<td>5.7</td>
<td>4.4</td>
<td>18.5</td>
<td>0.07</td>
<td>2.10</td>
<td>30.0</td>
<td>3.61</td>
</tr>
<tr>
<td>(造成土壌)</td>
<td>3</td>
<td>30〜65</td>
<td>5.7</td>
<td>4.5</td>
<td>19.3</td>
<td>0.03</td>
<td>0.52</td>
<td>17.3</td>
<td>0.89</td>
</tr>
</tbody>
</table>

ならない。草種は、オーチャード、レッドクレバーおよびイタリアンライグラスの混播となっている。

肥培管理については、毎年1回3月下旬に施肥が行われており、本調査期間中では、第2表に示すとおり、ha当たりNで28.57 kg、Pで6.23 kg、Kで23.71 kgが配合され、成形土壌に配給されている。また、これで2年に1回土壌改良を施用を行っていたが、本調査期間中は施用されなかった。

第2表 調査期間中の施肥管理 (kg/ha)

<table>
<thead>
<tr>
<th>施肥</th>
<th>肥 料 成 分</th>
<th>備 考</th>
</tr>
</thead>
<tbody>
<tr>
<td>昭和60年</td>
<td>4月24日</td>
<td>28.57</td>
</tr>
</tbody>
</table>

注）肥料：尿素入り複合肥料212号（T-N 20％、NH4-N 5.5％、P2O5 10％、水溶性P2O5 8％、K2O 20％）

放牧状況については、毎年4月中旬に入牧が始まり、10月中旬には退牧となっている。牧場からの聞き取りによると、調査期間中には、観察地区全体で延べ2,888頭が放牧されており、これを1日ha当たりの放牧頭数に換算すると約1頭となる。

2）水質分析法および水、塩類収支

(1) 水 質

対象地区からの流出水の水質については、第1図に示す。地区末端部に暗緑色流出地点と、表面流出水と暗緑色流出水が合流して流れる地点の2か所に、自記水位記録計（7日周期、1：1、ウイジン製LS30型）および三角堰を設置し、三角堰から流れ落ちる水をおおむね1回採水し分析した。雨水の水質については、茨城県農試場内に、採水用ポリ容器を設置して採水し分析した。

分析項目および方法は以下のとおりである。

・pH：ガラス電極法
・EC：東亜電波製電気伝導度計
・K・N：ケルダール法
・NO3-N：イオン電極法
・T-N：K-N+NO3-N
・T-P：硝酸・過塩素酸分解後アスコルビン酸還元法

・Ca, Mg：原子吸光光度法
・Na, K：炎光光度法
・CIE：クロム酸カリウムー硝酸銀滴定法

(2) 水収支

調査対象地区の水収支は、第2図のモデルにしたがって調査した。

降水量および蒸発散量については、現地に雨量計および小型蒸発計を設置して測定した。なお、蒸発散量は、蒸発計測定値、昭和54年度農林水産省農業土木試験場において報告されたローム植生（牧草）の傾斜地（勾配2〜15°）の蒸発散度の値を乗じて算出した。

流出水量は、調査地点2か所に設置した自記水位計録計からそれぞれ1時間ごとの水位を読み取り、ストリッ
クラウンド公式から流量を算出した。
地下浸透水量は、暗きゅ流出口水量をその量とした。

(3) 塩類収支
施肥量および降雨にともなう流入量と、流出水にともなう流出量から塩類の収支を調査した。また、本地区のような傾斜地（勾配3～18）では、降雨の際一時的に多量の流出水があり、塩類収支に与える影響は少なくないと予想されるので、この一時的な流出負荷についても併せて調査した。

① 平常時の場合
施肥にともなう肥料による負荷量は、調査期間中の施肥量から、また降雨による負荷量は、雨水水質（濃度）と降水量の積から求めた。流出量としての流出水による負荷量は、2か所の調査地点ごとに、流出水水質（濃度）と流出水量の積から求めた。

② 雨水時の場合
4月27日（施肥3日後、降水量16.5mm/日）および10月11日（降水量29.4mm/日）の降雨日に、経時的に流出水量と水質調査を行った。流出負荷量は、測定した流出水量と水質（濃度）の積から求めた。

III 調査結果および考察
1 塩類の動向
調査期間中の雨水、暗きゅ流出口水および流出水中の全窒素（T-N）、硝酸態窒素（NO₃-N）および電気伝導度（EC）の動向については、第3～5図に示す。（以下記号で記す。）
これによると、調査期間中における雨水中のT-N濃度は、0.39～1.21mg/l平均0.70mg/lであり、流出水では0.99～2.78mg/l平均1.62mg/l、暗きゅ流出水では1.48～2.89mg/l平均2.13mg/lとなった。59年は流出水の濃度がやや高く推移し、60年は逆に暗きゅ流出水の濃度が高く推移した。このことは、前述した59年と60年の流出水、特に表面流出水量の差が大きいことからみて、この影響によるものと考えられる。また、図から流出水と暗きゅ流出水の濃度の推移がそれぞれ呼応していることがわかる。しかし、60年の流出水の濃度が暗きゅ流出水に比べて低下している理由については、表面流出水との混合稀釈によるものか、流れる過程で微生物等に取り込まれたものか、あるいは観察によるものかなどについてはあきらかでない。NO₃-Nについては、月別の傾向はT-Nと
牧野における肥料成分の動向と収支

第3図 T-N濃度の推移

第4図 NO₃-N濃度の推移

第5図 EC値及び流出水量の推移
同様であったが、雨水、流出水および暗き＊流出水いずれも濃度はT－Nの2分の1程度で、概してカルデール窒素（K－N）の多い結果となった。T－NおよびNO3－Nの2か年にわたっての継続調査した結果からは、その濃度はおおむね12～2月の冬期間で上昇し、3～5月の春季に低下する傾向がうかがわれた。またす当たりの地区流出水量が8,000 tと増大した場合、暗き＊流出水、流出水の濃度が極端に高まる場合もみとけられた。T－N濃度の月別変化で、59年の6～12月の値と60年の4～12月の値を概観すると、流出水と暗き＊流出水の濃度差が全般的に59年に比べて60年で大きい。これらの結果の背景には、第3表に示したように、59年の降水量540.5mmが、60年同期の920.5mmに比べて60%程度と寡雨だったことにより、59年の流出水のほとんどが暗き＊流出水に由来したことがその理由として考えられる。第5図は、EC値と流出水量との関係を示したものであるが、この場合のEC値を塩類等の総量とみなし、流出水の総塩類と流出水量の関係をみると、低流出水量に推
牧野における肥料成分の動向と収支

移した59年ではばらついているが、60年では明らかに高い相関を示している。流出水量が多いほど濃度は低くなり、田浦らの報告にみられる流量と濃度の関係に一致する結果となった。また第6図に示す通り、暗きゅ流出口と流出水中のカルシウム（Ca）、マグネシウム（Mg）濃度を比べると、暗きゅ流出水の値が全般的に高く推移している。第7図には、カリウム（K）濃度の推移を示したが、これを時期的な変化でみると、60年4月まで急激に低下し、以降は低減している。また、降雨量の少なかった調査期間前半の傾向をみると、前述した塩類とは逆に、暗きゅ流出水に比べ流出水の濃度が高く推移している。この根拠については、今後さらに現地での調査検討が待たれるが、これらの一因としては第9図にもみられるとおり、調査期間中の降雨量の差異があるであろう。

リン（T-P）については、調査期間を通じて、雨水からはほとんど検出されなかった。流出水では最高で0.012ppm、暗きゅ流出水では0.01ppm以下と、いずれも極めて低濃度で推移した。

2）水収支

牧野における栄養塩類の収支をあきらかにするために、調査の対象とした区域内の水の収支をあきらかにしておく必要がある。そこで、調査期間中の水収支を求め第3表に示す。さらに、第8図には、降雨条件の異った

<table>
<thead>
<tr>
<th>項目</th>
<th>流入</th>
<th>排出</th>
<th>印</th>
<th>20mm/日以上</th>
<th>20mm以上の</th>
<th>20mm以上の</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>降水量</td>
<td>流出</td>
<td>表面</td>
<td>蒸発</td>
<td>流出</td>
<td>流出</td>
</tr>
<tr>
<td></td>
<td>(A)</td>
<td>(B)</td>
<td>出量</td>
<td>量</td>
<td>水量</td>
<td>出量</td>
</tr>
<tr>
<td>年次</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>540.5</td>
<td>52.1</td>
<td>29.7</td>
<td>22.4</td>
<td>439.9</td>
<td>492.0</td>
</tr>
<tr>
<td>60</td>
<td>1,452.6</td>
<td>293.8</td>
<td>74.9</td>
<td>218.9</td>
<td>495.0</td>
<td>788.8</td>
</tr>
<tr>
<td>計</td>
<td>1,993.1</td>
<td>345.9</td>
<td>104.6</td>
<td>241.3</td>
<td>934.9</td>
<td>1,280.8</td>
</tr>
</tbody>
</table>

注) 1）59年の値は6月11日からの値であり、60年は12月15日までの値である。
2）B = C + D, D = B - C, F = B + E, G = A - Fである。

調査期間前半の59年と後半の60年に分けて示す。

これによると、調査期間中の降水量は、1,993.1mmとなったが、59年の調査期間6月11日～12月31日間の降水量540.5mmは全体の27%に相当し、これは水戸の短期的な雨量に比べると61%と極端に少なく、年間をとおしても寡雨年であった。60年の調査期間1月1日～12月15日間の降水量1,452.6mmは全体の73%に相当し、この値は年均降水量1,376mmよりやや多い年となっ

調査期間を通じて、20mm以上の降雨日は、59年12回、60年29回の計41回となった。

蒸発量については、調査期間中934.9mmあり、うち59年は439.9mm、60年は495.0mmとなり、6月11日～9月15日時の降雨で比較すると、59年が60年の123%と上回った。

流出水量については、調査期間中345.9mmあり、59年が52.1mm（表面流出が22.4mm、暗きゅ流出が29.7mm），
60年が293.8mm（表面流出が218.9mm，暗きょう流出が74.9mm）となり，60年の流出の値は，59年の5.6倍となった。

以上の結果から，調査期間中の水収支をまとめてみると，降水量1,993.1mmに対し，46.9％にあたる934.9mmが蒸発散量，12.1％の241.3mmが表面流出量，5.3％の104.6mmが暗きょう流出量，35.7％の712.3mmがその他となった。年次別には，寡雨年の59年は，蒸発散量の比率が高く，その他のはなかったものに対し，60年においては，その他の46.9％と高比率になったことが特徴的であった。ここで，その他の水分は，降水量から流出水量と蒸発散量を差し引いた水量であり，これは土壌中に貯留された水分，暗きょうの位置よりさらに地下浸透した水量，および牧草に吸収された水分等が考えられるが，その割合はかなり高い。渋谷らは，斜面ライシメーターの調査結果から，年降水量1,353mmのときの総流出量（表面流出水量と地下水流出水量の和）は，植生のある区で558mmと推定している。調査結果では，対象地区的流出水量は降水量1,452.6mmに対して293.8mmにかかなり少なくなており，これらの差にみられる不明水量については，さらに今後の追跡が待たれる。

流出水量と降水量の関係を第9図に示す。これによると，地区内における流出水量は降水量におおむね比例したが，2月，8月，9月にみられるように必ずしもこれに符合しない場合もみられた。これらの理由の中に

は降雨時の降雨強度，降雨間隔，降雨前の土壌水分状態，牧草の草勢，気温など種々の要因の関与が考えられるが，本調査では，これらについて詳細な検討は行わなかった。

また，第10図には，59年中の表面流出水量と降水量の関係について，降水量10mm以上の場合について示した。これによると，両者間に高い相関がみられ，降水量10mmで1日ha当たり0.1m³，20mmで0.7m³，30mmで1.2m³の表面流出があり，降水量10mm以下での表面流出水量は極めて少ないことがうかがわれた。

第9図 月別の流出水量と降水量

第10図 降水量と表面流出水量との関係
牧野における肥料成分の動向と収支

3 塩類収支

塩類収支の計算は、前述した水収支調査結果にみられる流出特性を考慮して、平時の場合と降雨時の場合に分けて分析した。以下これらについて述べる。

1）平時の場合

雨水、流出水および暗きょ流出水に伴う塩類の負荷

<table>
<thead>
<tr>
<th>区分</th>
<th>降水量及び流出水量 (t)</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>年次</td>
<td>濃度 (ppm)</td>
<td>負荷量 (kg)</td>
<td>濃度 (ppm)</td>
<td>負荷量 (kg)</td>
<td>濃度 (ppm)</td>
</tr>
<tr>
<td>雨水</td>
<td>59 5,405.0</td>
<td>0.62</td>
<td>3.37</td>
<td>0.00</td>
<td>0.00</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>60 14,526.0</td>
<td>0.73</td>
<td>10.68</td>
<td>0.00</td>
<td>0.00</td>
<td>0.10</td>
</tr>
<tr>
<td>計</td>
<td>19,931.0</td>
<td>0.70</td>
<td>14.05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.09</td>
</tr>
<tr>
<td>流出水 (表面流出) + 暗きょ流出</td>
<td>59 52.2</td>
<td>1.93</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>17.64</td>
</tr>
<tr>
<td></td>
<td>60 2,937.8</td>
<td>1.61</td>
<td>4.73</td>
<td>0.006</td>
<td>0.02</td>
<td>1.46</td>
</tr>
<tr>
<td>計</td>
<td>2,990.0</td>
<td>1.62</td>
<td>4.83</td>
<td>0.006</td>
<td>0.02</td>
<td>1.74</td>
</tr>
<tr>
<td>暗きょ流出水</td>
<td>59 29.7</td>
<td>1.79</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>13.27</td>
</tr>
<tr>
<td></td>
<td>60 750.5</td>
<td>2.14</td>
<td>1.61</td>
<td>0.004</td>
<td>0.04</td>
<td>1.40</td>
</tr>
<tr>
<td>計</td>
<td>780.2</td>
<td>2.13</td>
<td>1.67</td>
<td>0.004</td>
<td>0.04</td>
<td>1.86</td>
</tr>
</tbody>
</table>

これによると、地区内への流入負荷としての雨水の負荷は、調査全期間中に、T-Nでha当たり14.05kgであった。これに対し、地区外への流出水にともなう流出負荷は、T-Nでha当たり4.83kgとなり、これは雨水にともなう流入量の3分の1程度である。また、調査全期間のT-N流出量を表面流出と暗きょ流出別にみると、表面流出分はha当たり4.83-1.67=3.16kgとなり、暗きょ流出分1.67kgに比べて、およそ2倍の量となっている。しかし、流出平均濃度は、暗きょ流出分が2.13ppm、流出分（暗きょ流出分+表面流出分）の1.62ppmを上回っており、水収支で述べた不明水素との関係で考察すると、不明水素を暗きょ流出以外の地下浸透流出分と仮定した場合、窒素収支との関係は大きく、この点の追跡が今後さらに必要となることが示唆された。T-Pについては、雨水にもなる流入はほとんどなく、流出水にともなう流出も調査期間中ha当たり0.02kgと極めて少ない量であった。その他の塩類では、雨水にともなう流入量はha当たりKでは1.80kg、Mgでは1.28kg、Caで7.42kgとなり、流出水にもなる流出量は、ha当たりKで5.20kg、Mgで18.55kg、Caでは29.09kgとなった。

以上の結果から、施肥した肥料分（第2表）を加え塩類収支をまとめると第5表のとおりである。

調査期間をとおして、T-Nではha当たり施肥量と流入量42.62kgに対し、流出量は4.83kg、差し引き37.79kgとなり、T-Pでは、ha当たり6.23kgに対し、0.02kg、差し引き6.21kgとなった。またKについては、ha当たり25.51kgに対し、5.20kg、差し引き20.31kgとなり、それぞれ施肥量と流入量に対し流出量が少なかった。これに対し、CaおよびMgについては、逆に流出量が流入量をかなり上回った。

以上の結果からかかわるところ、窒素、リン、カリウムについては、地区内に何らかの形で残留された結果となり、またカルシウム、マグネシウムについては、逆に地区内に蓄積されていたのが流出した結果となった。これからのことは、第11図に示すとおり、放牧地において
表 第5表 塩類収支 (kg/ha)

<table>
<thead>
<tr>
<th>因素</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>雨水（A）</td>
<td>3.37</td>
<td>10.68</td>
<td>14.05</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>施肥（B）</td>
<td>28.57</td>
<td>28.57</td>
<td>6.23</td>
<td>6.23</td>
<td>-</td>
</tr>
<tr>
<td>合計（C=A+B）</td>
<td>33.94</td>
<td>37.25</td>
<td>42.82</td>
<td>0.00</td>
<td>6.23</td>
</tr>
<tr>
<td>OUT流出水（D）</td>
<td>0.10</td>
<td>4.73</td>
<td>4.83</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>差（E=D-C）</td>
<td>0.37</td>
<td>34.52</td>
<td>37.79</td>
<td>0.00</td>
<td>6.21</td>
</tr>
<tr>
<td>註</td>
<td>59年は6月1日～12月31日、60年は1月1日～12月15日の値である。▲:流出量>流入量</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図 第11図 塩類収支要因モデル図

は、常に、放牧牛のふん尿による牧草への塩類の供給、それにともなった牧草の吸収・生育、牛による牧草の採食といった内部循環も考えられ、これらの影響が一因としてあげられよう。また、入水量調査でとらえることができなかった不明水流量との係わりも考えられ、これらの点についての検討が今後の課題である。

2）降雨時の場合

4月27日および10月11日の水質と流出水量調査結果を第6～7表および第12～13図に示した。

4月27日の調査は、流出ピーク以後の調査であったが、EC値とCa, Mg, Na濃度は、ピーク時が低く、以後高まる結果となり、逆に、ケルダール窒素（K-N）, P-T, K, 塩素（Cl）濃度は、ピーク時が高く、その後低下する傾向となった。前述したとおり、本牧野に

表 第6表 4月27日（施肥3日後、降水16.5mm）の水質変化 (ppm)

日時	pH	EC (μS/cm)	T-N	K-N	NO3-N	T-P	Ca	Mg	K	Na	Cl	三角セキ	
------	----	-------------	-----	-----	-------	-----	----	----	----	----	-----	-----	流量
4/27 8:25	6.30	200	1.18	0.51	0.67	0.002	11.3	7.5	1.3	6.9	4.9	0.126	
15:15	6.49	170	4.06	3.00	1.06	0.073	8.3	5.4	4.7	4.6	12.7	0.750	
16:45	6.49	175	3.22	2.34	0.88	0.060	8.0	6.4	4.5	5.1	11.7	0.453	
18:15	6.45	180	2.06	1.39	0.77	0.036	8.5	6.8	2.9	5.9	7.8	0.246	
20:00	6.48	185	1.86	1.02	0.84	0.016	9.5	6.6	2.2	6.3	6.8	0.205	
4/28 12:40	6.43	200	1.72	0.80	0.92	0.003	9.7	7.2	1.7	7.1	5.9	0.122	
4/29 12:45	6.48	200	1.59	0.58	1.01	0.004	10.1	7.5	1.6	7.3	4.9	0.095	

-186-
牧野における肥料成分の動向と収支

第12図 4月27日の流出水量と水質の関係

第7表 10月11日（降水量29.4mm）の水質変化

日・時間	pH	E C	T - N	K - N	NO₃ - N	T - P	Ca	Mg	K	Na	Cl	三角ゼキ流	流量 (m³/mi)
---------	----	------	-------	-------	----------	-------	-----	----	----	----	----		
10/11													
8:30	6.15	190	0.76	0.43	0.33	0.005	11.8	6.3	1.6	9.4	11.7	0.0579	
12:00	6.30	155	1.24	0.87	0.37	0.040	9.6	5.7	2.6	6.8	10.7	0.1528	
12:30	6.41	155	1.78	0.80	0.98	0.004	9.6	5.5	2.4	6.7	9.8	0.1302	
13:00	6.46	145	1.08	0.43	0.65	0.004	8.9	5.1	2.9	5.9	9.8	0.2161	
13:30	6.46	130	1.48	0.94	0.54	0.003	7.8	4.5	3.5	5.0	8.8	0.3754	
14:00	6.50	125	1.61	0.87	0.74	0.372	7.0	4.1	3.6	4.6	7.8	0.4525	
14:30	6.54	115	1.74	1.09	0.65	1.250	6.3	3.7	3.7	4.2	8.8	0.5482	
15:00	6.49	115	1.57	1.16	0.41	0.223	6.5	3.8	3.6	4.2	7.8	0.3754	
15:30	6.45	120	1.24	0.87	0.37	0.665	7.3	4.2	3.2	4.9	7.8	0.2722	
16:00	6.47	125	1.36	0.80	0.56	0.016	7.5	4.2	3.0	5.1	7.8	0.2161	
17:00	6.45	140	1.50	0.72	0.78	0.010	8.3	4.7	2.6	5.6	8.8	0.1882	
19:00	6.33	155	0.62	0.36	0.26	0.005	9.4	5.1	2.2	6.3	9.8	0.1675	

第13図 10月11日の流出水量と水質の関係

—187—
おける施肥作業を、本調査を行う 3 日前の 4 月 24 日に実施している。流量の増大とともに T-N, T-P, K 濃度の高まった背景として、これら施肥成分の流出にもとづく影響を考えられ、NO3-N 濃度の推移には、目立った変化はみられなかった。

次に、10 月 11 日の調査結果についてみると、この調査では、流出期間、ピーク時および流下後期との 3 つのパターンにおいて、ポイントをしらべて行った調査であったが、これらを概観すると、EC 値と C、Mg、Na、Ca、Mn の濃度においては、流出水量の増大とともに濃度は低下し、流出流量の減少とともに濃度は高まった。T-N, T-P, K 濃度の推移についてみると、増水時にそれぞれの濃度は高まる傾向がみられた。また、ピーク時においては、T-P の濃度変化の著しいことが目立った。これは、降雨時期の観察結果によるともあきらかのように、流出水がかなり顕著していたことから、土粒子の混入による影響と思われる。

以上、4 月 27 日と 10 月 11 日の降雨時調査結果について述べたが、ここで両者について比べると、前者で T-N 濃度差の大きい傾向がうかがえる。もちろん、4 月と 10 月では、気象条件、牧草の生育状態、土壤水分、牧草管理等、牧草における塩類収支に関与する要因の差異も考えられるが、これは、調査が施設後期のない時期に実施したこと、それに牧草の生育が初期段階であることからみても、前者が施肥による影響をかなりうけたことがうかがえる。

以上の結果から、それぞれの調査日の時間帯に流出した塩類の流出量を、野菜とリンについてまとめると、第 8 表のようにある。これによると、調査期間ごとの平均値に比べ、塩素の流出は、4 月 27 日の場合は 12.4 倍、10 月 11 日の場合は 2.5 倍となり、リンについては同様に高い流出を示した。このことから、対象地のように、山林を造成した傾斜（勾配 3 ～ 18°）地の放牧地では、降雨時の一時的な増水が、地区の栄養塩類の動向と収支にかなり関与しうることが示唆された。第 3 表に示すとおり、調査期間をとおしてみると 20 mm/day 以上の降雨量の回数は 41 回あり、それらの降雨日が合計流出水量は 141.5 mm になる。この量は、調査期間中における総流出水量 345.9 mm の 41 % を占めることからも実際の流出を示している。

本調査では、前述した 2 回の降雨日の調査結果にとどまったが、これらの調査結果からみても、降雨にともなう栄養塩類の流出は、あきらかに認められた。しかもこれらは、調査地区における種々の条件によって異なるようであり、降雨増水による流出調査については、また施設直後の回収調査、夏季および台風時等種々の条件下での把握が必要と思われる。

降雨時の土砂の流出および施肥後の肥料成分の流出等は、平常時の場合ほとんど流出していないリンの排出に結びついており、これら降雨増水時の栄養塩類の流出減少をねらうためにも、その対策として、望ましい牧草の管理法の一つとして、浸透防止など土砂の流出を少なくするためのムラのない草調の維持管理、施肥にあたっては溶出し難い有機質肥料、緩効性肥料の使用等適切な施肥管理に努めることが大切である。

IV 摘 要
1) 調査地区は、昭和 46 年から 51 年にかけて造成された大宮町営牧場 53.76 ha のうち、集水域として水収支等の調査が可能と思われる勾配 3 ～ 18°の傾斜地 10.5 ha を対象とした。

2) 調査地区における水収支は、降水量を 100.0 とした場合、蒸発散量 46.9 %、表面流出水量 12.1 %、暗き
きょ流出水量 5.3 %, その他 35.7 %ととなったが, その他の不明水量がかなり高い割合を占め, このことについては今後さらにその追跡が待たれる。

3）流出水（表面流出水 + 暗きょ流出水）の T−N 濃度は平均 1.62 ppm, 暗きょ流出水の濃度は平均 2.13 ppm となり, 暗きょ流出水の濃度が高かった。T−P 濃度については, 両者とも 0.01 ppm 以下と, きわめて低濃度であった。雨水の T−N 濃度は平均 0.70 ppm となり, T−P はほとんど検出されなかった。

4）栄養塩類の収支は, 堆素では, ha 当たり施肥量と雨水からの流入量 42.62 kg に対し, 流出量は 4.83 kg, リンについては, 施肥量からのみで ha 当たり 6.23 kg に対し, 流出量は 0.02 kg となった。カルシウム, マグネシウムでは流出量が流入量をかなり上回った。

5）4 月 27 日と 10 月 11 日の降雨日の堆素, リンの流出調査の結果, 施肥 3 日後の 4 月 27 日の場合, 増水時の T−N 濃度が 4.06 ppm を示した。10 月 11 日の場合, 増水時の T−P 濃度が最高 1.25 ppm を示した。

6）堆素, リンの流出量試算の結果, 4 月 27 日の場合, 堆素で時間ha 当たり 6.47 9 の流出となり, 調査全期間 (59 年 6 月 60 年 12 月) 平均の 12.4 倍を示し, 10 月 11 日の場合, リンで時間ha 当たり 0.30 9 と, 調査全期間平均 0.002 9 を大幅に上回った。

謝辞：本調査研究は, 環境庁の委託に基づいて実施したものである。本調査を行うにあたり, ご指導, ご助言を賜った農水省農業総合研究所（元）, 農水省農業試渓谷動治局（元）に対し心から感謝の意を表する。また, 地区選定にあたって特段の配慮をいただいた茨農試

小林登元環境部長（現作業技術部長）, 実際の調査にあたって親切に指導, 助言を賜り地方の調査協力をいただいた茨農試環境部小山田助主任研究員をはじめ同部職員に対し厚くお礼申し上げる。また現地での採水,降雨量測定に協力いただいた茨農試管理部田中男裕技師はじめ関係者方々, そして調査地区について協力いただいただきたず産業課, 大宮町営牧場長および杉村技師,石川技師に対し感謝の意を表すると共に厚くお礼申し上げる。

引 用 文 献
1）高村義見・田渕俊雄（1977）：水田肥料の流出と陸水の富栄養化, 日本河川年鑑, 861 〜 871,山海堂.
2）平山力・酒井一（1985）：水田からの肥料成分の流出とその対策（第 1 報）, 水田からの肥料成分の流出, 茨城農試研究報告, 第 25 号.
3）小川吉雄・石川実・吉原賢・石川昌男（1979）：畑地からの堆素の流出に関する研究, 茨城農試特別研究報告, 第 4 号.
4）九州農政局計画局（1981）：環境保全対策基礎調査・ア蘇地区, 環境変化追跡調査報告書.
5）渓谷動治局・上村春明・坂西研二（1981）：斜面ライシメーターによる水収支と土壌侵食に関する実験的研究, 農業土壌試験場報告, 第 21 号.
6）田渕俊雄・沼尻剛（1986）：非灌溉期における堆素流出負荷の特徴, 農土論集第 124 号 35 〜 43.
7）5）に同じ.
土壌の重金属汚染に関する調査研究

第6報 污染谷津田の改良とその後の水稲のカドミウム吸収

平山力・酒井一

Soil Pollution by Heavy Metals Part V.

Improvement of the dissected Vallay Paddy Fields Polluted by Cadmium and the Cadmium Absorption of Rice Plant.

Chikara Hirayama, Kuni Sakai.

面積10.6haを有する火山灰谷津田千代田村上稲穂地区は、現地改善対策試験結果にもとづき、昭和58年より土壌による25cm上乗せ客土によってカドミウム汚染土壌の改良対策が行われた。その後対策田について水稲を作付け、その生育と収穫、カドミウム吸収等について3か年間、追跡調査を行ったところ、玄米中のカドミウムはいずれの年も0.03ppm以下と極端に抑えられ対策の効果が顕著に認められたので、これらの概要を報告する。

I 緒 言

新治郡千代田村上稲穂地区水田は、昭和48年4月、千代田村役場に水田耕作者から、水田土壌が黒く変色し、腐敗臭が感じられるとの苦情があり、村が水田土壌の調査を行ったところ、高濃度のカドミウム（以下Cdと記す）が検出されたため、県は48年9月水田土壌及び産米の調査を行った。その結果、玄米に最高1.64ppmの高Cd米が検出された。汚染源は周辺から流入した工場排水中のCdによるものと結論され、これら汚染田の的確な改善対策の早急な実施が望まれ、直ちに恒久対策確立のための調査試験が実施された。農試では昭和49年より2か年間、現地改善対策試験を行い、その結果、非汚染土の25cm上乗せ客土が、当該地区の対策法として最もすぐれていることをあきらかにし、これらの結果はすでに前報1で報告した。対策処方策は、試験結果に基づいて作成され、県内や国の関係機関担当者によって検討が加えられたうえ、さらにこれにとづいた対策計画2が作成された。作成に際しては地区特有の軟弱地盤を配慮し、精密な土壌調査の繰返しはもちろん先進県の資料3も十分参考にした。

客土工事は昭和58年11月から、地区を3工区に分け、3か年計画で着工され、完了地区は59年より直ちに水稲の作付けが開始された。各工区とも水稲生育は順調に経過し、玄米収量もこれまでの慣行をうわまわったうえ、玄米中のCd濃度はきわめて低いレベルに抑えることができ、期待どおりの対策効果が確認された。

ここでは、これら対策の概要、対策後における水稲の生育とCd吸収結果等その概略について述べる。

II 改良対策方法

1）対策地域の概要

(1) 立地及び営農条件

対策地域は県のほぼ中央部の千代田村上稲穂にあり、県道土浦、八郷線と天王川舟橋間の区域である。地形は台地間を流れる天王川流域に発達した狭隘な谷津田で、その中は、上流部で20m、地域の下流部で150mとな
っている。地形はおおむね平坦であるが、標高 20～12 m と東西に緩に傾斜を示し、周辺台地との標高差は 10 m 以上と比較的深い谷が形成されている。

土壌は第 1 図に示したとおり、おおむね黒土壌の湿田タイプで作土の土性は細粒質となっている。土壌区分では、表層多腐植質多湿黒ポト土の千町無田土（茨城、下佐谷土）、及び腐植質黒ポクグライ土の八木模土（茨城、平沼土）である。母材は非固結火成岩でとくに表層では火山灰の影響が大きいが、下層 50 cm 以下では黒泥、泥炭層が出現し、軟弱地盤の性格を裏づけている。用水は、その水源を天王川に一部深井戸に依存している。

平年の平均気温は 14.3 ℃、年間総降水量は 1,251 mm である。対策地域の関係農家は 41 戸で、そのうちの 31 戸が第 2 種兼業農家で専業農家は 10 % 以内の 4 戸にすぎない。一戸あたりの平均経営耕地面積は 1.12 ha で、このうち水田 0.46 ha、畑 0.15 ha、樹蔭地 0.51 ha となっており、梨を中心とする果樹園が樹蔭地の大部分を占め、営農類型は果樹 + 水稲である。対策地域における水稲収量は 10 a あたり玄米で平均 440 kg であり、県平年収量 442 kg とほぼ同じである。

第 1 図 土壌条件と C d 污染状況

(2) C d 污染状況

本地域の C d 污染は、対策地域の上流の向原工業地内に立地する理研真空工業 K 霞ヶ浦工場が、昭和 42 年 1 月から昭和 47 年 6 月まで C d 含有塩素による電球の着色作業を行い、C d を含む排水を排出した。このため、かんがい水や、排水路の氾濫に伴って、有害物質である C d が工場排水の流入した水路付近の水田に混入し、水田の土壤汚染に結びついた。

なお、汚染源となった当工場は、昭和 55 年 7 月に工場の操業を停止し、現在当工場からの C d 排出はほとんど認められていない。

C d 污染の状況は第 1 図に示したとおり、昭和 48 年から 55 年度までの細密及び補足調査の結果から、玄米中 C d 濃度最大 1.64 ppm、土壌中（0 ～ 15 cm）濃度最高 32.0 ppm を示し、その濃度は上流から下流に向けて亜減している。
(3) 対策地区の面積と土地利用

対策地区の面積は10.6 haあり、このうち農用地として利用する土地は9.6 haであり、農用地以外の面積は、水田に附随する道や水路であった。しかし実際の対策計画では9.6 ha水田現況面積のうち、農家の土地利用等の意向等を考慮し、このうち0.5 haを道水路として利用されたことから、水田の実面積は9.1 haとなった。

2) 対策の基本方針

対策方策の骨格となった改良対策の基本方針は第1 表に示した。

これにより本地域の土壤汚染の改良対策は、(1)汚染

第1表 改良対策の基本方針

<table>
<thead>
<tr>
<th>項目</th>
<th>基本方針</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>土壤汚染改良対策</td>
<td>上乗せ客土25 cm</td>
<td>現地改善対策試験結果1)による。</td>
</tr>
<tr>
<td>再汚染防止対策</td>
<td>排水路の舗装</td>
<td>凍結融解、面吹破壊、水路底質の場内混入を防止するため、コンクリート製品による構築を設ける。</td>
</tr>
<tr>
<td>土壌改良</td>
<td>10 a当たり</td>
<td>ようりん700 kg、珪カル150 kg</td>
</tr>
<tr>
<td></td>
<td>ようりん</td>
<td>P吸5%相当量</td>
</tr>
<tr>
<td></td>
<td>硅カル</td>
<td>等級県水土壌改良基準4)による。</td>
</tr>
<tr>
<td>客土用土</td>
<td>火山灰土（ローム層）</td>
<td>0.1 NHCl可溶Cd最高0.16 ppm、CL</td>
</tr>
<tr>
<td>用水、水質</td>
<td>パイプライン方式</td>
<td>水質転換、水中Cd 0.0002 ppm</td>
</tr>
<tr>
<td>農業用水による客土の耐用性</td>
<td>30年後における対策水田作土中のCd</td>
<td>用水からのCd供給量1.032 μg + 土壌による水田作土Cd量1.420 μg + 水田作土重量(1) 8.873 = 0.276 μg/t</td>
</tr>
<tr>
<td>土地改良事業</td>
<td>公害防除特別土地改良事業</td>
<td></td>
</tr>
<tr>
<td>土地改良方式</td>
<td>ほ場整備</td>
<td>80 m × 25 m = 20 a区画</td>
</tr>
</tbody>
</table>

注）上稲吉地区農用地土壤汚染対策計画書2)（昭57.6.2国より承認）による。

を除去するための対策として上乗せ客土25 cmによる耕土の非汚染化と生産力確保のための土壤改良資材の施用である。上乗せ客土25 cmの採用は、現地改善対策試験の結果1)に基づくものであるが、客土25 cm採用の根拠についてはさらに後述する。土壤改良資材の施用は、客土材として地区周辺火山灰土のローム層（山赤土）を用いたことから、分析結果に基づく資材を、工事の手順に折り込んで施用し、作付初年度からの生産力の確保をねった。2)次に汚染を防止するための対策として、排水路のコンクリート製品による舗装を行った。このことは、冬季凍結融解等種々の自然条件によって破壊された法面や水路底質の汚染土が、場内に混入することにより惹起する再汚染防止をねった。用水、水質については本地域が水質汚染によってもあって水質転換を行った。水源は深井戸、用水はパイプライン方式とされた。用水中のCd濃度は0.0002 ppmである。また、これら農業用水からがいによる客土の耐用性についても、30年後を想定して試算した結果2)では、客土材そのものの自然試存容量0.1 NHCl可溶Cd最高0.16 ppm、前述用水中のCd 0.0002 ppmを基準にした場合、用水からのCd供給量1.032 μg + 客土材による水田作土Cd量1.420 μg + 水田作土重量(0〜15 cm) 8.873 t = 0.276 μg/t (0.276 ppm)となり、これは県内非汚染水田土壤のレベルに比べて低い値であり、30年後においても、汚染米出現の恐れはないと考えられる。土壤改良事業は、公害防除特別土地改良事業によって行い、20 a区画を基本としたほ場整備により実施した。なお、本地域は、未整理地域であったことから、対策工法として区画整理方式を採用した事
あり、農業生産の近代化を考慮し、併せ行う事業としてかんがい排水及び暗渠排水事業も実施した。これらの事業には対策地域のほかに一体地域として周辺水田1.0ha、その他水路等0.8ha、計1.8haの面積が含まれる。

3）客土深25cm採用の根拠

現地改善対策試験の結果1）によれば、当該地区の改良対策としては玄米中のCa吸収抑制、玄米の収量面からみて、客土深5cmを減らした20cm上乗せ客土区でも25cm客土区同等の効果の得られる見通しが得られた。しかし結果的に地の対策の基本方針として安全性を考慮し25cm上乗せ客土工法の採用となった。これらの根拠について述べれば次のようである。

当該地区の土壌条件がもともと軟弱地盤であることは前述したが、さらに試験終了後7年目の試験区について、跡地土壌の断面形態と土壌中のCd濃度、土壌の物理特性等について調査を行い、その結果を第2図、第3表に示した。これによると20cm排水客土区、25cm上乗せ客土区と客土層下3cm程度がCd濃度が高く、全C量も多く下層に埋没された汚染土の影響をうけていることが判明した。また汚染土壌の物理特性では三相割合の中で特に液相の占める割合が高く、仮比重も小さく透水係数は10^{-5}オーダーとなった。土壌の分散状態でも県内の湿田土壌（分散状態でプラス1程度）に比べて分散し易い値となっており、液性、テクスチャ、水分、液性指數も150%、76%、74、0.95と高く、これは県内千拓直後へドロ土壌4）（それぞれ160%、95%、72、1.00）とほぼ同等の値がみられた。

25cm上乗せ客土区

<table>
<thead>
<tr>
<th>層別</th>
<th>Cd (0.1N HCl)</th>
<th>透水係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>上乗せ客土</td>
<td>(cm)</td>
<td>(%)</td>
</tr>
<tr>
<td>すき床</td>
<td>0.12</td>
<td>1.2</td>
</tr>
<tr>
<td>旧作土</td>
<td>10.41</td>
<td>5.5</td>
</tr>
<tr>
<td>1.21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第2表 土壌の三相割合と透水係数

<table>
<thead>
<tr>
<th>区</th>
<th>名</th>
<th>固相 (%)</th>
<th>液相 (%)</th>
<th>気相 (%)</th>
<th>孔隙率 (%)</th>
<th>仮比重 (g/ml)</th>
<th>透水係数 (K205cm/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>無処理区</td>
<td>27.5</td>
<td>47.3</td>
<td>25.2</td>
<td>72.5</td>
<td>0.66</td>
<td>1.7 × 10^{-5}</td>
<td></td>
</tr>
<tr>
<td>25cm上乗せ客土区下層汚染土</td>
<td>32.5</td>
<td>42.5</td>
<td>25.0</td>
<td>67.5</td>
<td>0.78</td>
<td>1.4 × 10^{-5}</td>
<td></td>
</tr>
</tbody>
</table>

第3表 土壌の分散状態

<table>
<thead>
<tr>
<th>项目</th>
<th>土壌の分散状態</th>
<th>自然含水比</th>
<th>液性限界</th>
<th>そ性限界</th>
<th>そ性指数</th>
<th>液性指数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1日目</td>
<td>m/g(A) 分散状態</td>
<td>5日目</td>
<td>m/g(B) 分散状態</td>
<td>液性指数</td>
<td>そ性指数</td>
<td>液性指数</td>
</tr>
<tr>
<td>無汚染土（無処理区）</td>
<td>6.61</td>
<td>#</td>
<td>5.90</td>
<td>#</td>
<td>146</td>
<td>150</td>
</tr>
<tr>
<td>客土用土</td>
<td>5.82</td>
<td>+</td>
<td>5.63</td>
<td>+</td>
<td>85</td>
<td>94</td>
</tr>
<tr>
<td>25cm上乗せ客土区</td>
<td>5.60</td>
<td>+</td>
<td>5.40</td>
<td>+</td>
<td>86</td>
<td>95</td>
</tr>
<tr>
<td>汚染土</td>
<td>6.82</td>
<td>#</td>
<td>5.51</td>
<td>#</td>
<td>138</td>
<td>146</td>
</tr>
</tbody>
</table>

注）液性指数は0に近づくほど土壌の安定を示す。

第2表 土壌の三相割合と透水係数

第3表 土壌の分散状態

第2図 汚染土の影響土層

第2表 土壌の三相割合と透水係数

第3表 土壌の分散状態

第2図 汚染土の影響土層
土壌の重金属汚染に関する調査研究

以上のように汚染土壌は液状になりやすく、極めて不安定であることから客土層の圧力による土層間の微細土粒子の移動によって客土層下層 3 cm程度の Cd 濃度の上昇という現象がみられた。このような汚染土壌の特性は、本地域が周辺地域との比高が 10 m以上あり、伏流水の多い狭隘な谷津田であったことに由来しているものと考えられる。前述したとおり 25 cm 乗せ客土区の汚染土壌の液性指数等を現汚染土壌より小さくすることからみて、客土後予想される乾燥化においては、汚染土の土粒子も安定の方向に変化するものと考えられるが、安全性を考えすれば、土壌 20 cm + 客土厚 5 cm は必要である。

4）対策施工

対策工事後の土壌断面形状を模式図で示すと第 3 図のようになり、工事の手順は第 4 図に示した。上乗せ客土工は原汚染土を明、暗渠による乾燥し、均等整地後実施した。上乗せ客土 25 cm は土層の区分として、作土 0 〜 15 cm、転圧土（すき床土）15 cm を見込んでいたが、この場合の転圧土層の造成は、とくに工事手順の中に造成工事は含まず、上乗せ客土工と整地工に併行して 25 cm 土層の転圧を併行して施工し、転圧土層 25 cm 造成後、作土土厚 0 〜 15 cm 耕起し改良資材の散布を散布を行った。

第 3 図 対策工事後の土壌断面

第 4 図 対策工事の手順

III 対策後の水稲生育と Cd 吸収

対策工事は区域内を 3 工区に分け、年 1 工区づつ昭和 58 年度から 3 年前の完了計画で実施された。したがって、水稲の作付けは昭和 60 年度から順に行われた。

1 生育収穫

初年度着工した工区の作付けは、土地改良後初めての作付けとあって、若干の遅れがみられたが、その後 2、3 年目の工区では、工事が早目に終了してしまったこともあって作付けは順調であった。各工区の代表は場でみた対策後の水稲生育状況の調査結果は第 4 表に示した。

-195-
第4表 対策後の水稲の生育収量

<table>
<thead>
<tr>
<th>場所</th>
<th>No</th>
<th>客土</th>
<th>生育（9/18）</th>
<th>種別</th>
<th>種数（本/株）</th>
<th>昭59</th>
<th>60</th>
<th>61</th>
<th>昭59</th>
<th>60</th>
<th>61</th>
<th>玄米重（kg/10a）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>91.5</td>
<td>18.9</td>
<td>21.3</td>
<td>660</td>
<td>655</td>
<td>577</td>
<td>562</td>
<td>535</td>
<td>532</td>
<td></td>
</tr>
<tr>
<td>6 - 1</td>
<td></td>
<td>上乗せ客土</td>
<td>100.2</td>
<td>18.7</td>
<td>20.2</td>
<td>675</td>
<td>640</td>
<td>580</td>
<td>558</td>
<td>540</td>
<td>530</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>95.6</td>
<td>20.6</td>
<td>16.9</td>
<td>585</td>
<td>592</td>
<td>570</td>
<td>486</td>
<td>513</td>
<td>470</td>
<td></td>
</tr>
<tr>
<td>昭58</td>
<td>平均</td>
<td></td>
<td>95.8</td>
<td>19.4</td>
<td>19.5</td>
<td>640</td>
<td>629</td>
<td>576</td>
<td>535</td>
<td>529</td>
<td>511</td>
<td></td>
</tr>
<tr>
<td>了区</td>
<td>1 - 1</td>
<td>客土なし</td>
<td>88.6</td>
<td>20.5</td>
<td>22.0</td>
<td>647</td>
<td>-</td>
<td>-</td>
<td>525</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4 - 2</td>
<td></td>
<td></td>
<td>90.3</td>
<td>19.7</td>
<td>20.7</td>
<td>635</td>
<td>-</td>
<td>-</td>
<td>513</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>平均</td>
<td></td>
<td>89.5</td>
<td>20.1</td>
<td>20.9</td>
<td>641</td>
<td>-</td>
<td>-</td>
<td>519</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>昭59</td>
<td>17 - 2</td>
<td>上乗せ客土</td>
<td>90.2</td>
<td>19.2</td>
<td>21.8</td>
<td>-</td>
<td>640</td>
<td>618</td>
<td>546</td>
<td>530</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>工事完了区</td>
<td>18</td>
<td></td>
<td>89.7</td>
<td>20.0</td>
<td>23.0</td>
<td>-</td>
<td>630</td>
<td>620</td>
<td>520</td>
<td>515</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>22 - 2</td>
<td></td>
<td></td>
<td>91.0</td>
<td>18.5</td>
<td>20.4</td>
<td>-</td>
<td>637</td>
<td>-</td>
<td>-</td>
<td>518</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>平均</td>
<td></td>
<td>90.3</td>
<td>19.2</td>
<td>21.7</td>
<td>-</td>
<td>636</td>
<td>619</td>
<td>528</td>
<td>523</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>昭60</td>
<td>10 - 2</td>
<td></td>
<td>87.4</td>
<td>20.4</td>
<td>21.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>587</td>
<td>-</td>
<td>-</td>
<td>515</td>
</tr>
</tbody>
</table>

注) ② 併せおこなう事業で施工した場所① 桧試験。工事前地区平均玄米収量 420 kg/10a，品種：コシヒカリ，基肥 N，P2O5，K2O 8 kg/10a，追肥 3 kg×2 回。

第5表 対策後の水稲玄米Cd濃度

<table>
<thead>
<tr>
<th>場所</th>
<th>No</th>
<th>玄米</th>
<th>Cd</th>
<th>玄米</th>
<th>Cd</th>
<th>玄米</th>
<th>Cd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>昭59</td>
<td>60</td>
<td>61</td>
<td>昭59</td>
<td>60</td>
<td>61</td>
</tr>
<tr>
<td>昭58工事完了区</td>
<td>6 - 1*1</td>
<td>上乗せ客土</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.16</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>3 - 1</td>
<td></td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.11</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>13 - 5</td>
<td></td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>了区</td>
<td>1 - 1*2</td>
<td>客土なし</td>
<td>0.18</td>
<td>-</td>
<td>-</td>
<td>0.92</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4 - 2</td>
<td></td>
<td>0.16</td>
<td>-</td>
<td>-</td>
<td>0.80</td>
<td>-</td>
</tr>
<tr>
<td>昭59工事完了区</td>
<td>17 - 2</td>
<td>上乗せ客土</td>
<td>-</td>
<td>0.03</td>
<td>0.03</td>
<td>-</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td>-</td>
<td>0.02</td>
<td>0.03</td>
<td>-</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>22 - 2</td>
<td></td>
<td>-</td>
<td>0.03</td>
<td>0.03</td>
<td>-</td>
<td>0.15</td>
</tr>
<tr>
<td>昭60工事完了区</td>
<td>10 - 2</td>
<td></td>
<td>-</td>
<td>-</td>
<td>0.03</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

注) ① 桧試験。② 併せおこなう事業で施工した場所。
2 玄米のCd吸収
　対策を行ったは場に栽培した水稲玄米について、Cdの分析を行いその結果を第5表に示した。
　これによると、玄米中のCd濃度は、初年目、2年目、3年目産米ともに表土区は場で最高0.03 ppmを示した。
　この町は、汚染地で工事の都合上、単に併せたとならない事業により場整備を行った直接客土なし場の玄米Cd濃度初年目最高0.18 ppmに比べても大半に低いレベルであり、あきらかに対策の効果が認められた。われのCd濃度についても客土は場で最高0.16 ppm、客土なし場の昭和59年度産米で最高0.92 ppmを示し、対策の効果は明らかに濃度においても確認された。

3 減水深
　59年度工事を完了した場のうち、3箇所を選び、水稲の栽培期間の各減水深を年次別に追跡した。その結果を第6表に示す。
　これによると、工事初年度の減水深は31〜36 mm/日であり、次年度28〜31 mm/日、3年目27〜28 mm/日と、減水深の値は年次の経過によって漸次低下する傾向がうかがわれた。

IV 跡地土塩調査
　水稲の栽培結果から、Cdの吸収抑制効果がきわめて顕著であることを知ったので、刈取り後跡地土塩の調査を行い、その結果を第7、8、9表に示した。
　調査にあたってのねらいの重点は、まず1として客土により造成した耕土の栽培後のPH状態と土塩中の重金属濃度、第2に土塩の圧密状態、第3にりん酸地力の評価であった。まず土塩のPHをみると、作土は水浸で

<table>
<thead>
<tr>
<th>2年目 (= 60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>作付前</td>
</tr>
<tr>
<td>作付後</td>
</tr>
</tbody>
</table>

第7表 跡地土塩の重金属（ppm）

| 作付前 | pH | 6.4 | 6.4 | 6.4 | 6.5 | 6.5 | 6.3 |
| 作付後 | 6.5 | 6.5 | 6.5 | 6.5 | 6.3 | 6.3 |

第6表 減水深

<table>
<thead>
<tr>
<th>場No</th>
<th>年次</th>
<th>回数</th>
<th>X mm/日</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1</td>
<td>3</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>3-1</td>
<td>3</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>13-5</td>
<td>3</td>
<td>3</td>
<td>30</td>
</tr>
</tbody>
</table>

注) 昭和59年度工事完了区 回数: 測定(かんがい期間中)
第8表 土壌のち密度と透水係数

<table>
<thead>
<tr>
<th>項目</th>
<th>層厚</th>
<th>客土厚</th>
<th>土壌のち密度</th>
<th>鬱蔽透水係数</th>
<th>(\text{K}_2 \text{O (cm/sec)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>土壌</td>
<td>(cm)</td>
<td>(cm)</td>
<td>(山中式)</td>
<td>係數</td>
<td></td>
</tr>
<tr>
<td>6-1</td>
<td>1</td>
<td>0～15</td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15～30</td>
<td>30</td>
<td>21</td>
<td>6.1 \times 10^{-5}</td>
<td></td>
</tr>
<tr>
<td>3-1</td>
<td>1</td>
<td>0～15</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15～29</td>
<td>20</td>
<td>6.7 \times 10^{-5}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>29～29</td>
<td></td>
<td>19</td>
<td>3.1 \times 10^{-5}</td>
<td></td>
</tr>
<tr>
<td>13-2</td>
<td>2</td>
<td>15～28</td>
<td></td>
<td>20</td>
<td>5.4 \times 10^{-5}</td>
</tr>
<tr>
<td>3</td>
<td>28～28</td>
<td></td>
<td>19</td>
<td>2.7 \times 10^{-5}</td>
<td></td>
</tr>
<tr>
<td>1-1</td>
<td>1</td>
<td>0～15</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15～30</td>
<td></td>
<td>18</td>
<td>6.0 \times 10^{-5}</td>
<td></td>
</tr>
</tbody>
</table>

注）6-1は場：対策効果確認基準点、土壌調整：昭59.10.12

第9表 土壌の化学性（乾土あたり）

<table>
<thead>
<tr>
<th>設有場</th>
<th>調査年次</th>
<th>有効態</th>
<th>PbO（トルオーグ）</th>
<th>置換性（mg/100g）</th>
<th>(\text{CaO})</th>
<th>(\text{MgO})</th>
<th>(\text{K}_2 \text{O})</th>
</tr>
</thead>
<tbody>
<tr>
<td>昭59</td>
<td>(初年)</td>
<td>8.8</td>
<td>282</td>
<td>49</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-1</td>
<td>60（2年）</td>
<td>6.4</td>
<td>250</td>
<td>35</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61（3年）</td>
<td>57.3</td>
<td>237</td>
<td>31</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(作土：0～15cm)

6.3～6.4の値を示し、水稲の作付け後、対策後の年次別でも大差なかった。また作土（0～15cm）のC、D、Eの濃度は0.1NHC₆可溶で0.14～0.16ppmを示し、前述した客土用土中最高濃度と相違した。C、Zn濃度についても0.1NHC₆可溶でそれぞれ0.5～1.8ppm、2.2～2.6ppmといずれも極端に低い値を示し、pH同様水稲の作付前後、対策後の年次経過によっても大差は認められなかった。C、E、C、塩基置換容器は22前後の値を示し中庸であった。

次に土壌のち密度である。ち密度の測定は刈取後土壌断面の各層について山中式硬度計を用いて行ったが、測定結果では各場とも作土で15～17mm、次層で18～21mmの値を示し、いずれも作土に比べて次層で、値の高い傾向がうかがわれ、圧密層の形成がうかがわれた。

また、持ち帰った現地試料を室内で測定した飼蔽透水係数の値によれば、いずれの次層も10^{-6}オーダーを示し、山中式硬度計でうかがわれた圧密層の形成をうかがわせた。なお、第8表に示したとおり、客土工事を行い初年目の水稲栽培の終了した跡地は場で、土壌の断面調査を行い、土壌の確認を行った結果、いずれの場も28～30cmの値で、土壌深25cmを大きくうかがわせた。

一方、第9表に示した土壌の化学性の調査結果から、作土の有効態りん酸含量についてみると、対策後初年目跡地で乾土100gあたりトルオーグで8.8mg、2年目、6.4mg、3年目、4.7mgと値は年次の経過により逐次低下し、とくに3年目の値が初年目の1/2に低下していることが目立った。また、CaO、MgO含量も乾土100gあたり初年目で282mg、49mgの値を示し、本県水田土壌の基準値以上、CaO 200mg、MgO 25mg以上のレベルからみても対策3年目においてもこれをうかがわせていることが認められた。

V 考察

カドミウム汚染田は、これまでの栽培過程で産米中1回でも1ppm以上のカドミウムが検出され、それ以後全々出ない場合でも該当する。このような場に対しては土壌汚染の恒久対策を施さなければならない。対策は土壌汚染防止法に基づいて行われるが、具体的には土壌汚染対策事業として、対策地域の指定、対策計画の策定の手続きを経て実施される。

都道府県知事は、対策地域を指定した場合、区域内農用地汚染の防止もしくは除去後に汚染された農用地の合理的な利用方法を対策計画の中にあきらかになしにばならず、問題は、汚染された土壌の改善をいかなる方法で実施するかにかかってくる。

前述のとおり、本地区の改良は、公営除除特別地域改良事業による区画改善方式で現汚土壌土に非汚土壌による区画改客土25cmで実施した。25cmの客土深はあくまでも現地改善対策調査の結果によったものであり、さらにこれら施設の決定の背景には、当該地域の土壌が、大部分は下層泥炭土軟弱地盤であるため、改良後の乾田通
土壌の重金属汚染に関する調査研究

VI 摘要

千代田村上稲吉地区Cd汚染土壌の改良対策と対策後の効果の確認を行った結果をまとめると、次のようである。

1) 当該地区のCd汚染対策工法は、現状改善対策試験の結果に基づき、汚染を除去するための対策として、非汚染土の25cm乗せ客土法を採用した。

2) 深井戸による水質転換と汚染土の露出防止によって両汚染防止にとまった。

3) 小区画不定形水田をは場整備と併せて同時実施した。

4) 対策後における水稲生育は植付け初期より順調であり、Co収量も対策前地区慣行収量平均10aあたり440kgに対し、対策後3か年とも500kgをうかわった。

5) 玄米中Cd濃度は、対策後3か年とも0.03ppm以下での濃度で大幅に下まわり、対策の効果はきらかに認められた。

6) 跡地土壌について、客土層の厚さ、Cd濃度等の確認を行ったところ、全般的に客土厚はほぼ30cmと処方箋25cmを大幅に上まわっていることが確認され、表層（0〜15cm）のCd濃度も0.1NHCℓ可溶で0.14〜0.16ppmと処方箋通りであることが確認された。

7) 以上の結果から、当該地区は昭和48年汚染発覚以来16年目にして、一般水田に復帰できる見通しが得られた。

謝辞：実態解明から現状対策試験、対策処方箋作成、土壌改良その効果の確認に至るまで、長年にわたり多くの方々に大変お世話になった。心からお礼申し上げます。ときに本地域の対策についてはその計画から実施まで県内窓口としての一役の総括は公害対策課が中心となって進められたものである。地元役場、改良普及課、石岡地区農業改良普及関係者の方々に感謝の意を表す。
業試験場の関係者各位に心から感謝の意を表します。

引 用 文 献

1) 平山力ほか（1977）：十王町高原地区および千代田村上稲吉地区におけるカドミウム汚染田の改良対策，茨城試研報 139 ～ 152．
2) 茨城県（1982）：上稲吉地域農用地土壤汚染対策計画書
3) 秋田県雄勝平野土地改良事務所（1975）：公害特別対策土地改良事業「新城床舞地区事業概要書」
4) 平山力ほか（1977）：霞ヶ浦周辺千拓地土壤の改良に関する研究，茨農試特研報No.3，P 54．
5) 茨城県農林水産部（1979）：普通作物耕種基準，P 69．
6) 茨城県（1978）：茨城県耕地土壤の実態と対策，P 706 ～ 707．
7) 官報（1975）：号外 163 号，法律第 139 号，P19 ～ 21．