実験報告書様式(一般利用課題·成果公開利用)

| MIE Exportmontal Roport               | 提出日 Date of Report               |  |  |
|---------------------------------------|----------------------------------|--|--|
| J-PARC WILL Experimental Report       | 2010/05/14                       |  |  |
| 課題番号 Project No.                      | 装置責任者 Name of responsible person |  |  |
| 2009BM0002                            | 米村雅雄                             |  |  |
| 実験課題名 Title of experiment             | 装置名 Name of Instrument/(BL No.)  |  |  |
| Ex-situ 中性子回折測定による車載用高容量電池電極材料の結      | iMATERIA(BL20)                   |  |  |
| 晶構造解析                                 | 実施日 Date of Experiment           |  |  |
| 実験責任者名 Name of principal investigator | 2010/01/24                       |  |  |
| 渡邊学                                   |                                  |  |  |
| 所属 Affiliation                        |                                  |  |  |
| 日産自動車(株)総合研究所社会・フロンティア研究所             |                                  |  |  |

試料、実験方法、利用の結果得られた主なデータ、考察、結論等を、記述して下さい。(適宜、図表添付のこと) Please report your samples, experimental method and results, discussion and conclusions. Please add figures and tables for better explanation.

| 1. 試料 Name               | 1. 試料 Name of sample(s) and chemical formula, or compositions including physical form. |                       |        |  |  |
|--------------------------|----------------------------------------------------------------------------------------|-----------------------|--------|--|--|
| 【持ち込みサン                  | 【持ち込みサンプル】                                                                             |                       |        |  |  |
| 今回持ち込んな                  | ビサンプルは合計 13 点で、以下サンプルと                                                                 | 試料番号を表 1.に示す          | -<br>• |  |  |
|                          |                                                                                        |                       |        |  |  |
|                          | 表 1. 持ち込みサンプルと記                                                                        | <b>式料番号</b>           |        |  |  |
| 試料番号                     | 組成                                                                                     |                       | 合成     |  |  |
| MAT282                   | Li <sub>2</sub> MnO <sub>3</sub>                                                       |                       |        |  |  |
| MAT283                   | $Li_{1,2}Mn_{(9-x)/15}Co_{2x/15}Ni_{(3-x)/15}O_2$                                      | <i>x</i> = <b>0.5</b> | 日産     |  |  |
| MAT581                   | $Li_{1,2}Mn_{(9-x)/15}Co_{2x/15}Ni_{(3-x)/15}O_2$                                      | <i>x</i> = 0.5        | メーカー   |  |  |
| MAT582                   | $Li_{1,2+2y/3}Mn_{(9-x)/15-4y/3}Co_{2x/15+2y/3}Ni_{(3-x)/15}O_2$                       | x = 0.315, y = 0.024  | メーカー   |  |  |
| MAT584                   | $Li_{1,2}Mn_{(9-x)/15}Co_{2x/15}Ni_{(3-x)/15}O_2$                                      | x = 0                 | 日産     |  |  |
| MAT585                   | $Li_{1,2}Mn_{(9-x)/15}Co_{2x/15}Ni_{(3-x)/15}O_2$                                      | <i>x</i> = 1          | 日産     |  |  |
| MAT586                   | $Li_{1,2}Mn_{(9-x)/15}Co_{2x/15}Ni_{(3-x)/15}O_2$                                      | x = 0.25              | 日産     |  |  |
| MAT587                   | $Li_{1,2}Mn_{(9-x)/15}Co_{2x/15}Ni_{(3-x)/15}O_2$                                      | x = 0.75              | 日産     |  |  |
| MAT588                   | $LiMn_{1/2}Ni_{1/2}O_2$                                                                |                       | 日産     |  |  |
| MAT589                   | $Li_{1,2}Mn_{(9-x)/15}Co_{2x/15}Ni_{(3-x)/15}O_2$                                      | <i>x</i> = 0.5        | 日産     |  |  |
| (但し、PVDF、黒鉛、アセチレンブラック含む) |                                                                                        |                       |        |  |  |
| MAT590                   | PVDF、黒鉛、アセチレンブラックを含んだ                                                                  | 電極材料                  | 日産     |  |  |
| MAT593                   | LiMn <sub>1/3</sub> Co <sub>1/3</sub> Ni <sub>1/3</sub> O <sub>2</sub>                 |                       | 日産     |  |  |
| MAT594                   | $Li_{1.2}Mn_{(9-x)/15}Co_{2x/15}Ni_{(3-x)/15}O_2$                                      | <i>x</i> = <b>0.5</b> | メーカー   |  |  |

2. 実験方法及び結果(実験がうまくいかなかった場合、その理由を記述してください。)

Experimental method and results. If you failed to conduct experiment as planned, please describe reasons.

### 【実験方法】

粉末中性子回折

# 【測定】

今回の中性子ビーム強度は約 100 kWであったため、持ち込んだサンプルを全て測定することができた。測 定時間は 1 つのサンプル (密度は約 0.4 ~ 1.9 g/cm<sup>3</sup>)につき約 1 ~ 3 時間程度であった。

# 【結果】

今回の測定で得られた回折パターンを図1に示す。プロファイルを概観して特徴的なのは34400 µs 付近の 反射で、標準物質Li<sub>2</sub>MnO<sub>3</sub>(MAT282)ではある程度の強度を持つが、固溶体系試料ではほとんど反射が見 られない。このことは、Ni とLi とがそれぞれ正負の中性子散乱長を持つため、反射強度が相殺されている 可能性が高いことを示唆している。



図 1. ヒストグラム化された測定データ(試料番号は表1参照方)

【解析】

①組成式変換と結晶構造モデル

前回の測定(課題番号:2008G0018)で、固溶体系正極活物質の基本構造がLiMO<sub>2</sub>型(112型)よりはむしろ Li<sub>2</sub>MO<sub>3</sub>型(213型)に類似していることが得られている。そこで、以下に示すように置換量x及びyを含めた固 溶体系正極活物質の組成式を112型から213型へ変換を行った。

$$Li_{1,2+\frac{2y}{3}}Mn_{\frac{9-x}{15}}Co_{\frac{2x}{15}+\frac{2y}{3}}Ni_{\frac{3-x}{15}-\frac{4y}{3}}O_{2} \implies Li_{1,8+y}Mn_{\frac{9-x}{10}}Co_{\frac{x}{5}+y}Ni_{\frac{3-x}{10}-2y}O_{2}$$

さらに、固溶体系正極活物質を代表的なLi<sub>2</sub>MnO<sub>3</sub>型構造モデルで解析すると、一部のサイトの原子変位パ ラメーターが異常な値を取ることもわかっている。これらの知見から、同一z面上の 2bサイトのLiと 4gサイトの 遷移金属のNiとが相互置換するとし、表 2.に示すような結晶構造モデルを用いて解析を行った。 2. 実験方法及び結果(つづき) Experimental method and results (continued)

#### 表 2. 解析に用いた結晶構造モデル

(b)  $(Li_{0.9;y}Ni_{0.1-y})_2(Mn_{(9-x)/10}Co_{x/5+y}Ni_{(1-x)/10-y})O_3$  (単斜晶、C2/m、Z = 2)。格子定数  $a \approx 0.49$  nm,  $b \approx 0.85$  nm,  $c \approx 0.50$  nm,  $\beta \approx 109^{\circ}$ 

| 原子    | サイト        | 席占有率              |                  | 原子座標             |                  |
|-------|------------|-------------------|------------------|------------------|------------------|
|       |            | g                 | X                | У                | Z                |
| Li(1) | 2b         | 0.9+y             | 0                | 1/2              | 0                |
| Ni(1) | 2b         | 0.1 - y           | 0                | 1/2              | 0                |
| Li(2) | 2c         | 1                 | 0                | 0                | 1/2              |
| Li(3) | 4h         | 1                 | 0                | <i>y</i> ≈ 0.66  | 1/2              |
| Mn    | 4g         | (9- <i>x</i> )/10 | 0                | $y \approx 0.17$ | 0                |
| Co    | 4g         | x/5+y             | 0                | $y \approx 0.17$ | 0                |
| Ni    | 4g         | (1-x)/10-y        | 0                | $y \approx 0.17$ | 0                |
| O(1)  | 4 <i>i</i> | 1                 | $x \approx 0.22$ | 0                | z ≈ 0.23         |
| O(2)  | 8 <i>i</i> | 1                 | $x \approx 0.25$ | <i>y</i> ≈ 0.32  | $z \approx 0.22$ |

②解析結果

図1の回折パターンに対して、表2の結晶モデルを用いて各試料ごとに Rietveld 解析を行ったので、その結果を表3に示す。

| 試料             | MAT582 | MAT584 | MAT586 | MAT283 | MAT587 |
|----------------|--------|--------|--------|--------|--------|
| X              | -      | 0      | 0.25   | 0.5    | 0.75   |
| У              | -      | 0      | 0      | 0      | 0      |
| R因子            |        |        |        |        |        |
| $R_{wp}$       | 9,14%  | 9.94%  | 10.44% | 9.63%  | 12.35% |
| $R_{\rm p}$    | 7.02%  | 7.33%  | 7.33%  | 7.08%  | 8.71%  |
| $R_{\rm B}$    | 6.32%  | 11.78% | 10.22% | 8.62%  | 12.46% |
| $R_{\rm F}$    | 9.92%  | 13.00% | 15.12% | 12.51% | 17.42% |
| $R_{e}$        | 4.72%  | 2.56%  | 2.60%  | 3.45%  | 2.26%  |
| χ²             | 3.76   | 15.09  | 16.19  | 7.80   | 29.78  |
| 試料             | MAT585 | MAT581 | MAT594 | MAT582 |        |
| X              | 1      | 0.5    | 0.5    | 0.315  |        |
| У              | 0      | 0      | 0      | 0.024  |        |
| R因子            |        |        |        |        |        |
| $R_{wp}$       | 8.67%  | 9.11%  | 8.95%  | 6.14%  |        |
| R <sub>p</sub> | 6.59%  | 6.67%  | 6.62%  | 4.56%  |        |
| R <sub>B</sub> | 10.87% | 7.82%  | 11.69% | 6.01%  |        |
| R <sub>F</sub> | 12.96% | 10.85% | 11.75% | 12.18% |        |
| R <sub>e</sub> | 2.76%  | 1.97%  | 2.86%  | 2.28%  |        |
| χ²             | 9.89   | 21.45  | 9.79   | 7.24   |        |
|                |        |        |        |        |        |
|                |        |        |        |        |        |

#### 表 3. Rietveld 解析の結果

2. 実験方法及び結果(つづき) Experimental method and results (continued)

いずれの試料の解析においてもR<sub>wp</sub>の値は 10%前後で、基本的には構造モデルは支持されている結果を 得ることができた。しかしながら、フィッティングの良し悪しを示す  $\chi^2$ 値は 8~30と大きく、解析精度が低下し ている。この原因としては、213相以外の不純物相の存在による影響が考えられる。

【考察】

今回測定で得られた結果を以下にまとめる。

 ✓ 固溶体系正極材の結晶構造は、LiMnO<sub>2</sub>型構造ではなく、Li<sub>2</sub>MnO<sub>3</sub>型構造を基礎とした構造で、Mn サイトと同一z面上(図 3(a)のLiMn<sub>2</sub>O<sub>6</sub>層内)にあるLi(1)に遷移金属の一部(Ni)が置換している。





- ✓ 固溶体系正極材の格子は、基礎となったLi<sub>2</sub>MnO<sub>3</sub>よりもab面方向に拡大している。格子の拡大により、LiMn<sub>2</sub>O<sub>6</sub>層内の原子間距離同士の差は縮小し、Li(3)層内の原子間距離同士の差は拡大している。
- ✓ 固溶体系正極材の格子定数は x の増加とともに減少するが、現状の解析精度では原子間距離の x 依 存性に傾向を見いだすことはできない。

# 【今後の課題】

いずれの試料も不純物相が混入しているため、R 因子が下がらず、解析精度が低下している。したがって、 不純物相を同定して、それらを取り込んだ構造モデルを用いて再度解析し、結晶学的な観点から、固溶体系 正極活物質の高容量化メカニズムを検討するする必要がある。さらに、iMATERIA のデータ処理環境及び 解析プログラム Z-Rietveld は開発途上であり、両者が更新された場合は、再度解析し直す必要がある。