分施型の施肥法がナシ「幸水」成木の収量品質及び土壌溶液中窒素に及ぼす影響

[要約] ナシ「幸水」成木において、窒素施肥量の 3 割 (6kg/10a) を果実肥大期に追肥する 分施型の施肥法は、5 月下旬から 8 月上旬の地下 50cm 土壌溶液硝酸態窒素濃度を高く維持 し、1 果重が増加する。また、窒素施肥量は 2 割減肥した 20kg/10a で栽培が可能である。

農業総合センター園芸研究所

成果区分

指導

1. 背景・ねらい

本県のナシ栽培は近年多肥傾向にあり、施肥窒素による地下水の硝酸汚染も懸念されている。

そこで、ナシ「幸水」の成木において、果実肥大期に追肥を行う分施型の施肥法が樹体の生育、収量、果実品質、土壌溶液の硝酸態窒素濃度に及ぼす影響を明らかにする。

2. 成果の内容・特徴

- 1) 窒素施肥量は 25kg/10a(標準)、20kg/10a(-20%)とした。分施型の施肥法は総窒素施肥量を元肥: 追肥1: 追肥2: 礼肥=5:1.5:1.5:2の割合で施用した。元肥主体の施肥法は、元肥: 追肥1: 追肥2: 礼肥=8:0:0:2の割合で施用した。施用時期は元肥: 追肥1: 追肥2: 礼肥=3月:5月上旬:6月上旬:9月とした。
- 2) 1 樹あたりの樹冠面積は 22.8~23.1 ㎡、樹冠㎡あたりの新梢本数は 18.2~19.1 本、新梢長は 63.0~63.8cm、樹冠㎡あたりの果数は 9.4~9.6 個、樹冠㎡あたりの重量は 3.72~3.82kg、1 果重は 394~396g、地色値は 3.2、果肉硬度は 5.01bs、果汁糖度は 11.8%、果汁 pH は 5.30 の範囲で、すべての項目において窒素施肥量による差異は認められなかった(表 1)。このことから、窒素施肥量は標準量から 20%減肥することが可能である。
- 3)総窒素施肥量の3割を果実肥大期に追肥すると、元肥主体の施肥法と比較して1果重が増加する。果実品質においては、樹冠㎡あたりの重量3.56~3.89kg、地色値3.2~3.3、果肉硬度4.9~5.11bs、果汁糖度11.7~11.8%、果汁pH5.29~5.31の範囲で、追肥の有無による差は認められなかった(表1)。
- 4) 土壌溶液の深さ別硝酸態窒素濃度の推移では、深さ 20cm においては全区で 4 月上旬~5 月中旬にかけて顕著な上昇が認められた。これは、3 月に施用した元肥窒素の影響と考えられる。深さ 50cm では、5 月下旬~8 月上旬に追肥区で硝酸態窒素濃度が高く推移した。この期間に硝酸態窒素濃度を高く維持できたことが 1 果重増加に影響したと推察される。深さ 100cm では、施肥量、追肥の有無に関わらず、調査期間を通して 10mg/L 前後で推移した(図 1)。

3. 成果の活用面・留意点

- 1) 本成果は表層腐植質黒ボク土の雑草草生園における、樹齢 12 年~13 年生で樹勢中程度な「幸水」の成木を対象とした。
- 2) リン酸、加里については、成分で各 20kg/10a 元肥時に施用した。
- 3) 本成果では、堆肥施用を実施していない。

4. 具体的データ

表 1	生苔	収量及び果実品質	(平成 14~15 年度)
11	H \	小里从U小大叫只	

		 追肥	樹幹面	新梢の生育		収量(樹冠㎡当たり)		果実品質				
		地尼	積	本数(本/	平均長	果数	重量	1果重	地色	硬度	糖度	рН
(kg/10a)			(m³)	樹冠㎡)	(cm)	(個)	(kg)	(g)		(lbx)	(Brix%)	
20(-20%)		有	24.0	19.9	65.0	9.6	3.88	402	3.2	5.1	11.8	5.30
		無	22.3	18.2	61.1	9.2	3.56	385	3.3	4.9	11.8	5.30
25(標準)		有	24.3	18.2	66.5	9.7	3.89	399	3.2	5.0	11.8	5.31
		無(標準)	21.2	18.2	61.1	9.5	3.75	394	3.3	4.9	11.7	5.29
要因	窒素量	20	23.1	19.1	63.0	9.4	3.72	394	3.3	5.0	11.8	5.30
効果		25	22.8	18.2	63.8	9.6	3.82	396	3.2	5.0	11.8	5.30
_		有意水準	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	追肥	有	24.2	19.1	65.7	9.7	3.88	401	3.2	5.1	11.8	5.31
		無	21.7	18.2	61.1	9.4	3.66	389	3.3	4.9	11.8	5.29
		有意水準	NS	NS	NS	NS	NS	0.01	NS	NS	NS	NS
窒素量	₫×追肥	有意水準	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

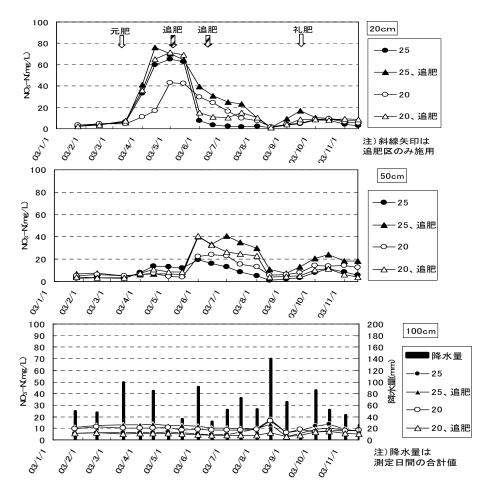


図 1 土壌溶液の深さ別NO₃-N濃度及び降水量の推移

5. 試験課題名・試験期間・担当研究室 環境保全型農業研究開発事業 (平成 13~14 年) ナシとトマトにおける持続性の高い施肥技術の開発 (平成 15 年) 土壌肥料研究室