ナシ黒星病に対するフェンブコナゾール水和剤の有効性

「要約〕

茨城県ナシ病害虫防除暦において、ナシ黒星病対象薬剤として採用されている DMI 剤 3 剤と新規登録フェンブコナゾール水和剤の防除効果を比較した結果、フェンブコナゾール水和剤はイミベンコナゾール水和剤より防除効果が高く有効である

農業総合センター	園芸研究所	成果	普及 (情報)
		区分	

1. 背景とねらい

DMI剤(Demethylation Inhibitors の略記で、ステロール脱メチル化阻害剤:ステロールの脱メチル化を阻害する作用を持つ薬剤の総称)は、ナシ黒星病の重要な防除薬剤であるが、耐性菌の出現を抑制するため、本県では年3回の使用に制限している。現在、茨城県ナシ病害虫防除暦では、イミベンコナゾール(商品名マネージDF)水和剤、ジフェノコナゾール(商品名:スコア水和剤10)水和剤、ヘキサコナゾール(商品名:アンビルフロアブル)水和剤の3剤を採用しているが、新たにフェンブコナゾール(商品名:インダーフロアブル)水和剤が農薬登録された。そこで、これら4剤の効果を比較検討し、より高い防除効果のあるDMI剤を採用して、黒星病に対する防除効果の安定を図る。

2. 成果の内容・特徴

- 1) 第2回散布42日後におけるフェンブコナゾール水和剤、ヘキサコナゾール水和剤、ジフェノコナゾール水和剤の防除価は、それぞれ93、95、96と防除効果が高い。
- 2) イミベンコナゾール水和剤の第2回散布42日後における防除価は77と、フェンブコナゾール水和剤、ヘキサコナゾール水和剤、ジフェノコナゾール水和剤と比較して防除効果は低い。
- 3) フェンブコナゾール水和剤、ヘキサコナゾール水和剤、ジフェノコナゾール水和剤の防除価は、第2回散布15日後から42日後まで、90以上と安定した防除効果が認められる。

3. 成果の活用・留意点

- 1) 平成17年版茨城県赤ナシ無袋栽培(ジベレリン無処理)病害虫防除暦にイミベンコナゾール水和剤に替えてフェンブコナゾール水和剤10,000倍液散布を採用。
- 2) 平成 16 農薬年度参考価格(小売)から 300 % / 10a 散布した場合の薬剤価格は、フェンブコナゾール水和剤が 678 円と最も安い。
- 3)かけむらのないように丁寧に散布する。
- 4) フェンブコナゾール水和剤の希釈倍率は 10,000 倍とこれまでの薬剤より高いので、 間違わないように注意する。

4. 具体的データ

	希釈	最終散布9日後	(6月18日)	最終散布15日後(6月24日)		
供試薬剤(商品名)	倍数	発病葉率	防除価	発病葉率	防除価	
	(倍)	(%)		(%)		
フェンフ゛コナソ゛ール (インダー) 水和剤	10,000	1. 3	8 9	0.3	9 9	
^キサコナゾール(アンビル) 水和剤	1,000	0.3	9 7	0. 3	9 9	
ジフェノコナゾール(スコア) 水和剤	4, 000	2. 0	8 3	1. 3	9 7	
イミベンコナゾール(マネージ)水和剤	6,000	3. 0	7 4	5. 7	8 5	
無処理	_	11.7		37.7		

表1 ナシ黒星病に対する各種DMI剤の防除効果

	最終散布21日後(6月30日)			最終散布42日後(7月21日)			薬剤費 ⁴⁾
供試薬剤1)	発病葉率 (%)	発病度2)	防除価3)	発病葉率 (%)	発病度	防除価	(円)
	(70)			(70)			
フェンフ゛コナソ゛ール	6.3	1	9 4	13.3	3	93	678
ヘキサコナソ゛ール	2. 7	1	98	11.3	2	9 5	1,260
シ゛フェノコナソ゛ール	3. 7	1	9 7	7. 7	2	9 6	963
イミヘ゛ンコナソ゛ール	16.7	6	7 4	36.0	1 1	7 7	830
無処理	68.7	2 3		95.0	4 8		

- 1) 平成 16 年 5 月 29 日 (黒星病発病初期)、6 月 9 日の計 2 回、背負式自動噴霧器を 用いて 10a 当たり 300ℓ換算量を散布
- 2) 発病度= $\{\Sigma$ (程度別発病葉数×発病指数)/(5×調査葉数) $\}$ ×100 発病指数; 0:発病なし, 1:病斑数 1 個, 3:病斑数 2~3 個, 5:病斑数 4 個以上
- 3) 防除価=100- {(薬剤区の平均発病度/無処理区の平均発病度) ×100}
- 4) 10a 当たり 300ℓ散布時の薬剤費 (平成 16 農薬年度参考価格・小売から算出)
- 5. 試験課題名・試験期間・担当研究室 農作物有害動植物発生予察事業・平成 16 年度・プロジェクト研究チーム ナシグル ープ、病虫研究室