I 地盤モデル・想定地震について

1. 茨城県の地形・地質について

1.1 茨城県の地形

茨城県は、関東地域の北東部に位置し、総面積は 6,097km² (平成 28 年 1 月 1 日現在)で、 県の約 30%が山地とその周辺丘陵地で、残りの 70%は平野で占められている。また、霞ヶ 浦をはじめとした湖沼や河川の水域が県土の 8%に及ぶ水郷県でもある。図 I.1.1-1 に茨城県 の地形区分を示した。

北部から北西部にかけては、南北に阿武隈山地の南縁部となる久慈山地、多賀山地の山々 と八溝山地の山々が連なっており、八溝山地には県内最高峰の八溝山(標高 1,022m)がそび えている。八溝山地から南は、久慈川、那珂川に分断される。県の中央部には栃木県との境 に加波山が位置し、その南には筑波山が位置している。

阿武隈山地の東側の太平洋岸に囲まれた地域には台地や丘陵地が広がっている。県の中央 から南西部には洪積台地が広がり、東から常陸台地に属する那珂、東茨城、鹿島(標高35-55m)、 行方(同30-35m)、筑波・稲敷(同20-35m)の各台地が、さらに西部には利根川に沿って 猿島台地(同15m程度)などの台地が南西へ台地面高度を下げながら分布している。これら の台地が形成する平坦な地形面は大きくは3つに区分され、形成時代の古いものから順に「下 末吉面」、「武蔵野面」、「立川面」と呼ばれている。

県南部を中心に、利根川、鬼怒川、小貝川の流域に沖積低地が発達し、霞ヶ浦や北浦等 の湖沼も形成されている。

図 I.1.1-1 茨城県の地形区分 茨城県 地学ガイド(1977)

1.2 茨城県の地質

関東地方は、西南日本の要素を持つ地質区分とすることができる。中央構造線の延長と考 えられる利根川構造線は、高崎西方からほぼ現在の利根川に沿って東南東に走り、鹿島付近 に至る。その南側には三波川・秩父帯・三宝山・四万十帯と順次帯状に配列している。その 北側には内帯の要素である深成岩類や美濃・丹波帯に対比される足尾・八溝の中古生層など の分布が認められている。図I.1.2-1 に茨城県の地質図を示した。

北東部の多賀山地には花崗岩の貫入岩体を中心に、主として北に古期変成岩類、南に古生 層が分布し、東縁の北茨城から日立にかけての沿岸部には狭炭層を狭在する古代三系が分布 する。棚倉構造線(破砕帯)を挟んだ西側の久慈山地から八溝山塊周辺には、新第三系が分 布する。

八溝山塊は、主として中古生層で構成され、南の筑波山塊には、花崗岩貫入岩体、さらに 南東側には筑波接触変成岩が分布する。

中部から南西部に広がる洪積台地は、半固結の礫・砂・シルト及び粘土の互層で構成され、 表層は関東ロームが被覆し、台地は下末吉面に対比される。

沖積低地には、埋没谷があり、礫・砂・粘土・腐植土が堆積している。最も海水準が下が った更新世後期におきたウルム氷期の際に、古鬼怒川が下総層群からなる台地に深い谷を刻 み、今の龍ケ崎市付近において GL-50m の深さに達している。この谷に七号地層に始まる海 成の沖積層が堆積した。この時期、古鬼怒川・桜川による河成の堆積物や氾濫原堆積物も同 時に堆積し、自然堤防や後背湿地を形成した。

図 I.1.1.2-1 茨城県の地質図 茨城県 地学ガイド(1977)

1.3 地盤のモデル化

1.3.1 地盤モデル作成の概要

地震動分布および液状化の可能性を検討するために、県内の地盤を 250m メッシュごと にモデル化を行った。図 I.1.3-1 に地下構造の模式断面図を示す。構造物の基礎となる工 学的基盤を境に、浅部地盤と深部地盤に分けてモデル化を行った。

国立研究開発法人防災科学技術研究所は、地震調査研究推進本部における「地下構造モ デル検討分科会」で、千葉県・茨城県の浅部・深部統合地盤モデルを検討している。ここ では、このモデル(バージョン7.6)を用いて、地震動評価を行った。

浅部・深部統合地盤モデル構築で対象とした周期領域は、図I.1.3-2 に示すとおりである。

図 I.1.3-1 日本の主に堆積平野における地盤構造の模式断面図 防災科学技術研究所(2013)

図 I.1.3-2 各地盤モデル作成に関する対象周期との関係概念図 防災科学技術研究所(2013)

1.3.2 浅部・深部統合地盤モデルの作成方法

浅部・深部統合地盤モデルの作成の流れを図I.1.3-3 に示し、モデル作成の概念図を図 I.1.3-4 に示す。作成方法の概要は以下のとおりである。

- 深部地盤モデルは、物理探査結果や深い井戸資料などをもとに、地震基盤から工学 的基盤までの速度層を設定し、同一速度層の上面深度を全国一律に評価・作成され た全国地下構造モデル(J-SHISモデル)を用いる。
- ② 浅部地盤モデルは、県内のボーリングデータ、微地形区分そして地質状況を踏まえ、 工学的基盤から地表までの 250m メッシュの地質層序モデルを設定する。
- 深部地盤モデルと浅部地盤モデルを重ね、地震基盤から地表までの浅部・深部統一 地盤モデルを設定する。
- ④ 茨城県内で微動アレイ探査を行うとともに県内の地震動観測記録も収集し、それぞれの地点における観測スペクトルと地盤モデルにより計算される理論スペクトルがフィッティングするように地盤モデルの修正を行う。
- ⑤ これらの各地点の修正モデルを空間補間して、最終的な浅部・深部統一地盤モデル を設定する。

浅部・深部統合地盤モデル作成の概念図

図 I.1.3-4

防災科学技術研究所(2013)

I -8

(1) 浅部地盤モデル(地質層序モデル)の作成

ボーリングデータをもとに地質層序モデルを作成する。地質層序モデルの作成手順を図 I.1.3-5 に示す。

(2) 常時微動観測データの収集と整理

初期モデルの地質層序モデルに対して、常時微動測定結果との整合性を検討するために、 常時微動観測データの収集と整理を行っている。図I.1.3-6 に単点微動及び微動アレイの観 測点の位置図を示す。単点微動では H/V スペクトルを求め、微動アレイでは空間自己相関法 (SPAC 法)を用いて分散曲線を求めている。

(3) 地震観測データの収集と整理

初期モデルの地質層序モデルに対して、地震観測結果との整合性を検討するために、地震 観測データの収集と整理を行っている。図I.1.3-7 に解析に用いた地震の震央位置及び地震 観測点の位置図を示す。地震観測データからは R/V スペクトルを求めている。

図 I.1.3-7 解析に用いた地震の震央位置及び地震観測点位置図 上図:地震の震央位置、下図:地震観測点 防災科学技術研究所(2013)

(4) H/V スペクトルおよび R/V スペクトルを用いた地盤モデルの修正例

上述した常時微動観測による H/V スペクトルおよび地震観測記録による R/V スペクトルを 用いて、初期の地盤モデルより計算されるスペクトルを比較し、H/V スペクトル及び R/V ス ペクトルを説明できるように地盤モデルの修正を行った。H/V スペクトルと地盤モデルより 計算されるスペクトルとの比較例を図 I.1.3-8 に示す。また、R/V スペクトルと地盤モデル より計算されるスペクトルとの比較例を図 I.1.3-9 に示す。

I 地盤モデル・想定地震について 1.茨城県の地形・地質について

1.3.3 浅部・深部統合地盤モデルの検討結果

S 波速度 350m/s~3200m/s における代表的な上面深度分布図を図 I.1.3-10、図 I.1.3-11 に示した。また、深部地盤モデルの断面図を図 I.1.3-12、図 I.1.3-13 に示した。

図 I.1.3-11 深部地盤 速度層上面深度分布(2)

図 I.1.3-12 深部地盤モデル断面位置

図 I.1.3-13 深部地盤モデル断面図

図 I.1.3-14 は微地形区分を、図 I.1.3-15 は浅部・深部統合地盤モデルに基づく、表層 30m の平均 S 波速度(AVS30)を表し、図 I.1.3-16 に震度増分を示す。

図 I.1.3-14 微地形区分 J-SHIS のデータにより作成

図 I.1.3-15 AVS30 (平均 S 波速度)

図 I.1.3-16 内閣府の手法による震度増分(基準S波速度 600 cm/s)

1.4 前回調査と本調査の地盤モデル作成の比較

前回の調査においても深部地盤モデルと浅部地盤モデルの作成を行っている。収集データ量 違いや地盤モデル作成の方法の違いなどが大きく異なっている。本調査と前回調査の地盤モデ ル作成の比較を表 I.1.4-1 に示す。

衣 4 回詞且と平詞且の地盤モノル F の比判	表 I . 1. 4-1	前回調査と本調査の地盤モデル作成の比較
---	--------------	---------------------

		前回調査(平成8,9年度)		本調査(平成 28, 29 年度)
浅部地盤	(1)	地形・地質資料の収集・整理	(])	地形・地質資料の収集・整理
	2	ボーリングデータの収集	2	ボーリングデータの収集
	3	地質断面図の作成	3	ボーリングデータのあるメッシュは
	4	代表柱状図(448 分類)		ボーリングデータより地盤のモデル
	5	県全域のメッシュに代表柱状図を		化を行う
		当てはめる	4	ボーリングデータのないメッシュ
				は、周辺のボーリングデータを補間
				して地盤のモデル化を行う
深部地盤	1	物理探査結果の収集	1	物理探査結果の収集
	2	深井戸の資料の収集	2	深井戸の資料の収集
	3	以上の資料をもとに、先新第三系	3	同一速度層の上面深度分布を設定
		相当層、三浦層群相当層、上総層		
		群相当層の上面深度を 2.5km メッ		
		シュごとに設定		
地盤モデ			1	浅部地盤モデルと深部地盤モデルを
ルの修正				合わせ、浅部・深部統一地盤モデル
				を設定
			2	常時微動測定の実施及び地震観測記
				録の収集
			3	統一地盤モデルより計算される伝達
				特性と常時微動及び地震観測記録観
				測記録による周期特性を比較し、異
				なっていれば統一地盤モデルの修正
				を行う
			4	最終的な浅部・深部統一地盤モデル
				を設定する
メッシュ	500	mメッシュ	250	mメッシュ
の大きさ				

2. 想定地震の選定

2.1 茨城県の地震活動

茨城県とその周辺で発生した主な被害地震を図I.2.1-1、表I.2.1-1に示す。 茨城県に被害を及ぼす地震は、主に以下のタイプの地震である。

- ・ 関東地方東方沖合や相模湾から房総半島南東沖にかけてのプレート境界付近で発生する
 地震
- ・ 陸域の様々な深さの場所で発生する地震

茨城県南西部では、やや深い場所(深さ30~50km)や深い場所(深さ50~70km)で定常的に地 震活動が活発である。被害地震としては、1895年霞ヶ浦付近の地震(M7.2)、1921年龍ヶ崎付近 の地震(M7.0)、1930年那珂川下流域の地震(M6.5)、1983年茨城県南部の地震(M6.0)、2005 年茨城県南部の地震(M5.3)などが知られている。最近数十年間ではM7程度の地震の発生は知ら れていない。相模湾から房総半島南東沖で発生した地震では、1923年の関東地震(M7.9)があり 県内で死者・行方不明者5名などの被害が発生した。関東地方東方沖合から福島県沖で発生した 地震では、明治以降で1909年房総半島南東沖の地震(1日にM6.7とM7.5の地震が発生)、1938年 茨城県沖の地震(M7.0)、同年の福島東方沖地震(M7.5)などが知られているが、2011年東北地 方太平洋沖地震が発生するまでは茨城県内に大きな被害を及ぼした地震はなかった。

2011年3月11日14時46分に三陸沖を震源とした東北地方太平洋沖地震(Mw9.0)が発生し、茨 城県内では日立市、高萩市、常陸大宮市、笠間市、那珂市、小美玉市、鉾田市及び筑西市で震度 6強のほか、全ての市町村で震度5弱以上が観測された(図I.2.1-2、図I.2.1-3)。茨城県の 主な被害は、震災直接死24名、震災関連死41名、行方不明1名(以上、2014年12月31日現在、茨 城県公表)、住宅全壊2,629棟、半壊24,376棟、津波による床上浸水1,799棟など(以上、2017 年2月28日現在、茨城県公表)であった。東北地方太平洋沖地震(Mw9.0)発生後に余震が多く 発生したが、2016年11月22日福島県沖の地震(M7.4)で津波による被害(図I.2.1-4)、2016年 12月28日茨城県北部の地震(M6.3)で揺れによる被害(図I.2.1-5)がわずかではあるが発生した。

沈み込む太平洋プレートの内部で発生する地震としては、1985年茨城県南部の地震(M6.0、深 さ78km)、1988年東京都東部の地震(M6.0、深さ96km)、1992年東京湾南部(浦賀水道付近)の 地震(M5.7、深さ92km)が知られている。また、1894年(明治)東京地震(M7.0)は深さははっ きりしないものの関東地方の下に沈み込んだ太平洋プレート内部で発生したと考えられている。 このように、沈み込む太平洋プレートの内部で発生する地震は、関東地方の50km~100kmの深さ で発生すると考えられる。

図 I.2.1-1 茨城県とその周辺で発生した主な被害地震(~2007年) 地震調査委員会(2009年)

表 I.2.1-1 茨城県に被害を及ぼした主な地震(~2007年)

地震調杏委員会	(2009年)
地成咖啡女员女	(2005 - 7)

西暦(和暦)	地域(名称)	М	県内の主な被害(カッコは全国での被害)
818 (弘仁9)	関東諸国	7.5 以上	(相模、武蔵、下総、常陸、上野、下野などで被害。圧死者多数。)
1677.11.4 (延宝5)	磐城・常陸・安房・上総・ 下総	8.0	磐城から房総にかけて津波。水戸領内で溺死者36人、家屋 全壊189棟。
1855.11.11 (安政2)	((安政)江戸地震)	7.0 ~ 7.1	家屋全壞27棟。
1895.1.18 (明治28)	霞ヶ浦付近	7.2	鹿島、水戸、那珂、新治、行方などで被害。圧死者6人、負 傷者34人、家屋全壊37棟。
1923.9.1 (大正12)	(関東地震)	7.9	死者・行方不明者5人、住家全壊517棟。
2005.2.16 (平成17)	茨城県南部	5.3	負傷者7人。

図 I.2.1-2 2011年3月11日東北地方太平洋沖地 図 I.2.1-3 2011年3月11日東北地方太平洋沖地 度分布

気象庁(2012年)

震の本震(M9.0、最大震度7)の市町村ごとの震 震の本震(M9.0、最大震度7)の茨城県内の市町 村ごとのの震度分布

気象庁(2012年)

図 I.2.1-4 平成28年11月22日福島県沖の地震 (M7.4)の震度分布

気象庁震度データベース検索

図 I.2.1-5 平成28年12月28日茨城県北部の地 震(M6.3)の震度分布

気象庁震度データベース検索

2.2 茨城県およびその周辺で検討されている想定地震

(1) 内閣府による首都直下の M7 クラスの地震

首都及びその周辺地域では、南方から伊豆半島をのせたフィリピン海プレートが伊豆半島の 北部で北米プレートに衝突し、それより東の領域では陸の北米プレートの下に、フィリピン海 プレートが相模トラフから沈み込み、これらのプレートの下に太平洋プレートが日本海溝・伊 豆小笠原海溝から沈み込んでいる特徴的で複雑な構造を成している(図I.2.2-1)。このため、 この地域で発生する地震の様相は極めて多様で、これら地震の発生は概ね次のように分類され る(図I.2.2-2)。

- ① 地殻内(北米プレート又はフィリピン海プレート)の浅い地震
- ② フィリピン海プレートと北米プレートとの境界の地震
- ③ フィリピン海プレート内の地震
- ④ フィリピン海プレートと太平洋プレートとの境界の地震
- ⑤ 太平洋プレート内の地震
- ⑥ フィリピン海プレート及び北米プレートと太平洋プレートとの境界の地震

図 I.2.2-1 関東周辺のプレート境界(内閣府(2013))

図 I.2.2-2 南関東地域で発生する地震のタイプ(内閣府(2013))

内閣府では、これらの地震について最近の調査・研究の成果を収集し、検討を行った。M7 クラスの首都直下地震について、フィリピン海プレート内で発生する地震を主たる検討対象の 地震に加え、検討を行うことにした。図I.2.2-3にM7クラスの首都直下地震の断層位置を示 す。茨城県では、茨城県南部(Mw7.3)と茨城・埼玉県境(Mw7.3)の北米プレートとフィリ ピン海プレートの境界地震があげられる。

図 I.2.2-3 M7クラスの首都直下地震の断層位置

内閣府(2013)

(2) 原子力規制委員会の新規制基準適合性に係る審査会合における茨城県北部地域での活断層

原子力規制委員会の新規制基準適合性に係る審査会合では、茨城県北部地域での活断層について、東海第二発電所の敷地周辺の地質構造に関する調査の結果、図I.2.2-4に示す断層を震源として考慮する活断層として評価している。

これらのうち、①の棚倉破砕帯東縁断層、同西縁断層の連動(M7.5)と⑤F1断層、北方陸域の断層、塩ノ平地震断層の連動(M7.8)の2つの活断層が東海第二発電所に影響があるとして詳細に検討している。

震源として考慮する活断層のリスト

	断 層 名	長さ (km)	地震規模M ^{※1}
1	棚倉破砕帯西縁断層~同東縁付近の推定活断層	42	7.5
2	関ロー米平リニアメント	6	6.8 ^{%2}
3	竪破山リニアメント	4	6.8 ^{%2}
4	宮田町リニアメント	1	6.8 ^{**2}
5	F1断層~北方陸域の断層~塩ノ平地震断層	58	7.8
6	F3断層~F4断層	16	6.8
1	F8断層	26	7.2
8	F16断層	26	7.2
9	A-1背斜	20	7.0
10	関谷断層	40	7.5
	深谷断層帯·綾瀬川断層	103	8.2
12	F11断層	5	6.8 ^{%2}

※1 地震規模は松田(1975)により算定

※2 長さの短い断層については地震規模をM6.8として評価

図 I.2.2-4 東海第二発電所周辺の活断層分布

日本原子力発電株式会社(2018)

(3) 地震調査委員会が検討した茨城県内の活断層

地震調査委員会(2015)では、関東地域の活断層の長期評価(第一版)において、関東地域及び その周辺領域において評価対象とした活断層及び評価対象としなかった構造・活断層の分布を図 I.2.2-5のようにまとめている。地震調査委員会では、関東地域の陸域及び沿岸域でM 6.8 以上 の地震を起こす可能性のある活断層を全て評価することを目指して、活断層の分布に関する既存 資料や地質構造、重力異常、空中写真等を精査し、活断層としての証拠が揃っているものを選定 して評価している。

茨城県内及びその周辺では、P1~P5、L1、L2が示されているがいずれも評価対象とし なかった構造・活断層となっている。表I.2.2-1にはP1~P5の活断層の可能性はあるものの、 現時点では活断層としての証拠が揃っていないことから評価から外した構造を示し、表I.2.2-2 にはL1とL2の活断層研究会編(1991)で活断層と指摘されているもののうち検討の結果、活断 層の可能性の低い構造と判断したものを示す。

図 I.2.2-5 関東地域及びその周辺領域において評価対象とした活断層及 び評価対象としなかった構造・活断層の分布

地震調査委員会(2015)

表 I.2.2-1 活断層の可能性の低い構造

地震調査委員会(2015)

断層名(確実度,活動度)	説明
(図 I .2.2-5 での位置)	
関ロ-黒磯リニアメント	確実度がIIIと低く、連続性や活動度も乏しいことから、活断層
(III, -) (L1)	の可能性は低いと判断した。
棚倉破砕帯西縁断層	山田川に沿う第三紀集塊岩と砂岩を境する断層であり、岩質の相
(III , -) (L2)	違によるリニアメントの疑いがある(活断層研究会編, 1991)こ
	とから、活断層の可能性は低いと判断した。

※確実度は活断層であることの確からしさを表す指標。確実度 III は、活断層である可能性 はあるが、ずれの向きが不明であったり、河川や海の浸食作用など他の原因で形成された 疑いが残るもの。

表 I.2.2-2 活断層の可能性のある構造

地震調査委員会(2015)

地域(図I.2.2-5 での位置)	内容
日 立 沖 (P1) ・ 大 洗	茨城県沖には複数の正断層が分布する。当海域では原子力安全・保安院
沖 (P2)	(2011a, b)によって海上音波探査が行われており、日立沖のF1断層において
	少なくとも前期更新世まで、大洗沖のF3・F4断層において少なくとも中期
	更新世までの活動が認められるが、その後の活動については、この海域に
	は新しい堆積層が存在しないため不明である。その他の断層では、少なく
	とも後期更新世以降の活動は認められない(原子力安全・保安院,2010)。
鹿島一行方地域	霞ヶ浦から北浦周辺には、南北性の緩やかな波状変動が認められている。
(P3)	重力異常も南北性の急変帯を示す(図 I.2.2-6)。本変動の原因は不明だ
	が、直下あるいは東方に活断層が存在する可能性もある。
関 谷 断 層 南 方 域	関谷断層南方には、南北走向の重力異常の急変帯が長さ20km 程度にわたり
(P4)	連続する(図Ⅰ.2.2-6)。新期の地形面には変形は認められないが、5万
	分の1地質図幅「宇都宮」には、中期中新統の火山堆積物から成る宇都宮
	丘陵に緩やかな背斜が示されている。本地域東方は鬼怒川の新期堆積物に
	覆われ、伏在断層が存在する可能性もある。
野田地域 (P5)	反射法弾性波探査(佐藤ほか,2010b)により、西傾斜の逆断層とその上盤
	側に上総層群、下総層群を含む地層が緩く傾斜する背斜構造が認められた
	(Ishiyama et al., 2013)。明瞭な地形的特徴としては現れていないが、重力異
	常の急変帯でもあり(図Ⅰ.2.2-6)、野田地域南部の下総台地の隆起(中
	澤・田辺, 2011)に関係する活断層が存在する可能性もある。

Bouguer Anomaly Horizontal Gradient Distribution Gridding: 0.0025 deg. mesh. Assumed density: 2.67. Band-pass WL: 2-125 (km).

図 I.2.2-6 関東地域の短波長重力異常

図(勾配)に評価対象の活断層を表示 したもの

仮定密度 2.67g/cm3 によるブーゲー異常 (波長帯域 2 - 125km)の空間微分。

(地質調査所編 (2000)、Gravity Research Group in Southwest Japan (2001)、

Yamamoto et al.(2011)に基づき、中部大学 工藤 健教授作成)

地震調査委員会(2015)

(4) 過去に被害をもたらした太平洋プレート内の地震

太平洋プレート内で発生し、被害をもたらした地震としては、図I.2.2-7に示すような地震が 知られている。1933年昭和三陸地震(M8.1)では、震害は少なかったが甚大な津波による被害が あった。1993年釧路沖地震(M7.5)では、震源が約100kmと地下深いプレート内で発生し、規模 が大きく建物や道路などの被害が発生した。1994年北海道東方沖地震(M8.2)では比較的浅いと ころで発生し、津波をともなった。

関東でも、1953年の房総沖の地震(M7.4)が知られており、津波をともなった。また、関東平 野直下では、2.1で述べたように、1985年茨城県南部の地震(M6.0、深さ78km)、1988年東京都 東部の地震(M6.0、深さ96km)、1992年東京湾南部(浦賀水道付近)の地震(M5.7、深さ92km) などが知られている。

図 I.2.2-7 太平洋プレート内地震の発生のしくみ 文部科学省(2004)

(5) 茨城県津波浸水想定(平成 24 年 8 月公表)

茨城県では平成19年に津波浸水想定図を公表したが、平成23年に制定された津波防災地域づく り法に基づく新たな津波浸水想定区域図を平成24年8月に公表した。津波浸水想定に当たっては、 図I.2.2-8に示す茨城県沿岸に最大クラスの津波をもたらすと想定される地震を想定した。

東北地方太平洋沖地震津波は、平成23年3月11日に発生した東北地方太平洋沖地震の再来を想 定した地震である。

H23 想定津波は、地震調査研究推進本部から平成23年11月に公表された「三陸沖から房総沖に かけての地震活動の長期評価(第二版)について」を基に想定した地震である。

	対象津波	東北地方太平洋沖地震津波	H23 想定津波
マグニチュード		Mw = 9.0	Mw = 8.4
		$Mt = 9.1 \sim 9.4$	$Mt = 8.6 \sim 9.0$
1	使用モデ <mark>ル</mark>	中央防災会議モデル	茨城県モデル
	説明	平成23年3月11日、三陸沖を震源とした地震により発生した津波。 東日本大震災を引き起こし、東北から関 東を中心に甚大な被害をもたらした津波の再来を想定。	地震調査研究推進本部から平成23年 11月に公表された「三陸沖から房総沖に かけての地震活動の長期評価(第二版) について」を基に想定した地震。 (平成19年に茨城県で想定した津波「延 宝房総沖地震津波」の震源域等を参考 にした地震。)
概要	震源域		
Ě	È1:M _w t	、モーメントマグニチュード	
ł-	± ∠ : IVI t (L	、伴仮ヾクーラユート	

図 I.2.2-8 茨城県津波浸水想定に用いた最大クラスの津波

茨城県(2012)

2.3 茨城県で備えるべき想定地震

茨城県及びその周辺における過去の被害地震、断層の分布状況、地震動又は津波の計算に想定 された地震をもとに、茨城県で備えるべき想定地震を設定した。表 I.2.3-1に想定地震を示す。 地震動は想定の観点に合わせ、シナリオを検討する地震に対しては波形計算を行う詳細法、それ 以外の地震に対しては距離減衰式に基づく簡便法を用いて評価した。

また、実際に甚大な被害をもたらした2011年東北地方太平洋沖地震については、県内で発生した液状化分布について液状化可能性の予測手法の検討に用いた。

No	地震名	地震 規模	想定の観点	地震動 評価法	参考 モデル
1	茨城県南部の地震 (茨城県南部)	Mw7.3	首都直下のM7ク ラスの茨城県南		内閣府 (2013)
2	茨城・埼玉県境の地震 (茨城・埼玉県境)	Mw7.3	部地域に影響の ある地震の被害		内閣府 (2013)
3	F1断層、北方陸域の断層、塩ノ 平地震断層の連動による地震 (F1断層)	Mw7.1	県北部の活断層	∋¥ ⟨m ∖+-	原子力 規制委員会
4	棚倉破砕帯東縁断層、同西縁断層 の連動による地震 (棚倉破砕帯)	Mw7.0	による地展の恢	叶州公	審査会合 資料など
5	太平洋プレート内の地震(北部) (太平洋プレート(北部))	Mw7.5	プレート内で発		地震調査委員
6	太平洋プレート内の地震(南部) (太平洋プレート(南部))	Mw7.5	主、る地展の被害		会での議論
7	茨城県沖から房総半島沖にかけて の地震 (茨城県沖~房総半島沖)	Mw8.4	津波による被害	簡便法	茨城県 (2012)

表 I.2.3-1 茨城県で備えるべき想定地震

注 1 : M w は 、 モ ー メ ン ト マ グ ニ チ ュ ー ド

注2:地震名の下段にあるカッコ内の名称は略称

(1) 茨城県南部地域で発生する M7 クラスの地震(茨城県南部の地震(プレート境界))

内閣府(2013)では、最新の知見に基づき、フィリピン海プレート上面における大正関東地 震の震源域、スロースリップの領域、地震活動の低い蛇紋岩化の領域についての検討を行い、 M7クラスの地震を想定する震源断層域を「茨城県南部」及び「茨城・埼玉県境」に設定してい る(図I.2.3-1)。

ここでは、茨城県南部で発生するM7クラスの地震について、内閣府(2013)と同様の断層パ ラメータを用い、詳細法により工学的基盤最大速度を求め、AVS30から横田ほか(2005)によ り計算する方法(内閣府の手法)によって地表震度を求めた。

内閣府(2013)で用いられた断層パラメータを表 I.2.3-2に、断層モデル及び内閣府(2013) による震度分布図を図 I.2.3-2に示す。地震の規模は Mw7.3 として、強震動生成域(以降、

「SMGA(Strong Motion Generation Areas)」と呼ぶ)のみを設定した断層モデルとなっている。 詳細法により求めた工学的基盤と地表の震度分布を図I.2.3-3に示す。

図 I.2.3-1 内閣府(2013)による茨城県南部の地震及び茨城・埼玉県境の地震

(茨城県南部の地震)の断層パラメータ					
断層全体	セグメント	茨城県南部	備考		
	面積 (km ²)	2,114			
	平均応力降下量 (MPa)	3	プレート間地震の平均的な値		
	平均すべり量 (m)	1.4	$M_0=\mu DS$		
	地震モーメント (Nm)	1.2×10^{20}	$0.41 \times \Delta \sigma \times S^{3/2}$		
	Mw	7.3			
SMGA	応力パラメータ (MPa)	25.0			
	面積 (km ²)	317			
	面積比 (%)	15			
	平均すべり量 (m)	4.45	$M_0=\mu DS$		
	地震モーメント (Nm)	5.8×10 ¹⁹	$0.41 \times \Delta \sigma \times S^{3/2}$		
	Mw	7.1			
そのほか	破壞伝播速度 (km/s)	2.7			
	fmax (Hz)	6			
	剛性率 (GPa)	41			

表Ⅰ.2.3-2 内閣府(2013)によるフレート境	界地震
----------------------------	-----

図 I.2.3-2 茨城県南部地域で発生するM7クラスの地震(茨城県南部の地震)の断層モデ ル(左図)及び内閣府(2013)による震度分布図(右図)

(□:強震動生成域、★:破壊開始点)

(a) 工学的基盤震度

(b) 地表震度

図 I.2.3-3 地震動計算結果 茨城県南部地域で発生するM7クラスの地震(茨城県南部の地震(プレート境界)) (□:強震動生成域、★:破壊開始点)

(2) 茨城県南部地域で発生する M7 クラスの地震(茨城・埼玉県境の地震(プレート境界)) 茨城県南部地域で発生するM7クラスの地震(茨城県南部の地震(プレート境界))と同様に、 茨城・埼玉県境の地震について、内閣府(2013)と同様の断層パラメータを用いて、地表震度 を求めた。

内閣府(2013)で用いられた断層パラメータ表 I.2.3-3に、断層モデル及び内閣府(2013) による震度分布図を図 I.2.3-4に示す。茨城県南部の地震と同様に、地震の規模は Mw7.3 とし て、SMGAのみを設定した断層モデルとなっている。詳細法により求めた工学的基盤と地表の震 度分布を図 I.2.3-5に示す。

	セグメント	茨城・埼玉県境	備考			
断層全体	面積 (km ²)	2,151				
	平均応力降下量(MPa)	3	プレート間地震の平均的な値			
	平均すべり量 (m)	1.4	$M_0 = \mu DS$			
	地震モーメント (Nm)	1.2×10^{20}	$0.41 \times \Delta \sigma \times S^{3/2}$			
	Mw	7.3				
SMGA	応力パラメータ (MPa)	25.0				
	面積 (km ²)	323				
	面積比 (%)	15				
	平均すべり量 (m)	4.45	$M_0 = \mu DS$			
	地震モーメント (Nm)	5.9×10 ¹⁹	$0.41 \times \Delta \sigma \times S^{3/2}$			
	Mw	7.1				
そのほか	破壞伝播速度 (km/s)	2.7				
	fmax (Hz)	6				
	剛性率 (GPa)	41				

表 I.2.3-3 内閣府(2013)によるプレート境界地震 (茨城・埼玉県境の地震)の断層パラメータ

図 I.2.3-4 茨城県南部地域で発生するM7クラスの地震(茨城・埼玉県境の地震)の断層 モデル(左図)及び内閣府(2013)による震度分布図(右図)

(□:強震動生成域、★:破壊開始点)

(a) 工学的基盤震度

(b) 地表震度

(3) F1 断層、北方陸域の断層、塩ノ平地震断層の連動

原子力規制委員会の新規制基準適合性に係る審査会合では、茨城県北部地域での活断層の地 震等を対象地震とした検討が行われている(図I.2.3-6)。これらの活断層のうち、特に影響 の大きいと考えられるF1断層と周辺の断層との連動(図I.2.3-6中⑤)を検討した。

震源として考慮する活断層のリスト

	断 層 名	長さ (km)	地震規模M ^{※1}	
1	棚倉破砕帯西縁断層~同東縁付近の推定活断層	42	7.5	
2	関ロー米平リニアメント	6	6.8 ^{%2}	
3	竪破山リニアメント	4	6.8 ^{%2}	
4	宮田町リニアメント	1	6.8 ^{%2}	
5	F1断層~北方陸域の断層~塩ノ平地震断層	58	7.8	
6	F3断層~F4断層	16	6.8	
1	F8断層	26	7.2	
8	F16断層	26	7.2	
9	A-1背斜	20	7.0	
10	関谷断層	40	7.5	
	深谷断層帯·綾瀬川断層	103	8.2	
(12)	F11断層	5	6.8 ^{%2}	

※1 地震規模は松田(1975)により算定

※2 長さの短い断層については地震規模をM6.8として評価

図 I.2.3-6 茨城県北部地域の活断層

日本原子力発電株式会社(2018)

新規制基準適合性に係る審査会合資料においては、F1断層、北方陸域の断層、塩ノ平地震断層の連動による地震として、M7.8を想定している。本検討においても、茨城県の北部に影響を 及ぼす地震として、F1断層、北方陸域の断層、塩ノ平地震断層の連動による地震(M7.8、断層 長さ58km)を検討した。審査会合資料(図I.2.3-7)から、以下の要素を参考に、地震調査委 員会による強震動予測レシピ(以下、「レシピ」という)に従って断層モデルを作成した。

- 断層の地表トレース位置
- 断層長さ
- 地震発生層上限及び下限深さ

審査会合資料では、原子力施設への影響が大きくなるよう設定されたアスペリティの位置に ついては、レシピで設定される標準的な位置として断層中央へ配置した。断層の規模がM7.8、 断層の長さが58kmと長いことから、断層の破壊様式を

1. 円形破壊面を仮定するケース

2. 円形破壊面を仮定しないケース

の2ケースの断層モデルを作成した。作成した2ケースの断層モデルを図I.2.3-8、図I.2.3-9に、設定した断層パラメータを表I.2.3-4、表I.2.3-5に示す。

詳細法により求めた工学的基盤と地表の震度分布を図I.2.3-10、図I.2.3-11に示す。

レシピによると、震源断層の長さが震源断層の幅に比べて十分に大きい長大な断層に対して、 円形破壊面を仮定することは必ずしも適当ではないことが指摘されており、このような場合に は Somerville et al. (1999) による震源断層全体の面積に対するアスペリティの総面積の比 率、約22%からアスペリティの総面積を推定する方法があることが記されている。円形破壊面 を仮定するケースの場合、アスペリティーの面積(367.7km²)は、総面積(1,011km²)に対し て36%となっており、22%に比べると 1.6 倍とかなり大きくなっている。このようなことから、 今回の想定では、円形破壊断面を仮定しないケースを被害想定に用いることにした。

図 I.2.3-7 審査会合資料によるF1断層、北方陸域の断層、塩ノ平地震断層の考え方(左 図)及び基本断層モデル図(右図)

日本原子力発電株式会社(2016)

図 I.2.3-8 F1断層、北方陸域の断層、塩ノ平地震断層の連動の断層モデル図
 (円形破壊面を仮定するケース)
 (□:強震動生成域、★:破壊開始点)

図 I.2.3-9 F1断層、北方陸域の断層、塩ノ平地震断層の連動の断層モデル図 (円形破壊面を仮定しないケース)

(□: 強震動生成域、★: 破壞開始点)

表 I.2.3-4 断層モデルパラメータ

(F1断層、北方陸域の断層、塩ノ平地震断層の連動:円形破壊面を仮定するケース)

		原電資料	設定値		
活断層	長さ L (km)	活断層調査結果による位置を基に設定	57.7 km		
断層モ	·デル上端深さ H _s (km)	微小地震の発生及び地下構造から設定	3.0	km	
地震発生層下端深さH _d (km)		微小地震の発生及び地下構造から設定	18.0	km	
断層傾斜角δ (°)		活断層調査結果に基づき設定	60 °		
巨視的	り震源パラメータ	設定方法	北部南部		
断層モ	デル原点	地中の上端における屈曲点	北緯 36. 東経 140	878675 ° .721689 °	
走向θ	(°)	原電資料より	158 °E	181 °E	
傾斜角	lδ (°)	原電資料より	60 °	60 °	
すべり	角 γ (°)	東側隆起の正断層(原電資料より)	-90 °	-90 °	
地震発	を生層の密度 ρ (g/cm ³)	地震本部による「全国1次地下構造モデル (暫定版)」を参考に設定	2.7	km	
地震発生層のS波速度β(km/s)		地震本部による「全国1次地下構造モデル (暫定版)」を参考に設定	3.4 km		
地震発	生層の剛性率 μ (N/m ²)	$\mu = \rho \cdot \beta^2$	3.1E+10	N/m ²	
断層モ	·デル上端深さ(km)	原電資料より	3 km	3 km	
単位区	間長さLseg (km)	原電資料より	22 km	36 km	
単位区	二間幅 W _{seg} (km)	レシピに従い設定	18 km	18 km	
単位区	:間面積 S _{seg} (km ²)	$S_{seg} = L_{seg} \times W_{seg}$	396 km ²	648 km ²	
重複除	法の単位区間面積 S _{seg} (km ²)		379.5 km ²	631.5 km ²	
断層モ	デルの総面積 S _{model} (km ²)	$Smodel = \Sigma S_{seg}$	1011	km ²	
マグニ	チュードM	M=(logL+2.9)/0.6	7	.8	
地震モ	メントM ₀ (Nm)	$logM_0=1.17M+10.72$	6.51	E+19	
モーメ	ントマグニチュードMw	M _w =(logM ₀ -9.1)/1.5	7	.1	
静的応	、力降下量 Δσ (MPa)	$\Delta \sigma = 7/16 \cdot M_0/R^3$	4.9 MPa		
平均すべり量 D _{model} (m)		$D_{model} = M_0 / (\mu \cdot S_{model})$	2.1 m		
(Nm/s ²) 短周期レベルA (Nm/s ²)		$A=2.46\cdot10^{10}\cdot(M_0\cdot10^7)^{1/3}$	2.13E+19	Nm/s ²	
微視的震源パラメータ			2.131119		
全アスペリティ面積 S _a (km ²)		$S_a = \pi r^2$, $r = \frac{7\pi}{4} \cdot M_0 / (A \cdot R) \cdot \beta^2$	367.7 km ²		
		$\sigma_{c} = \Lambda \sigma_{c} = 7/16 \cdot M_{0}/(r^{2} \cdot R)$	13.6	MPa	
単位区	【間ごとの微視的震源パラメータ				
単位区	[間地震モーメントMoses (Nm)	単位区間面積の1.5乗に比例して分配	2.07E+19 Nm	4.44E+19 Nm	
単位区	[間平均すべり量 D _{seg} (m)	$D_{se\sigma} = M_{0se\sigma} / (\mu \cdot S_{se\sigma})$	1.7 m	2.3 m	
全	面積 S (km ²)	単位区間面積に比例して分配	138.0 km^2	229.7 km^2	
テア	平均すべり量 Da car (m)	$\mathbf{D}_{0} = \mathbf{F} \cdot \mathbf{D}_{0} \xi = 2.0$	3.5 m	4.5 m	
	実行応力 Ga ang (MPa)		13.6 MPa	13.6 MPa	
11	地震モーメントMos and (Nm)	$M_{0a} = 10$	1 51F+19 Nm	3 23F+19 Nm	
第	而積 S. (km ²)	$S_{a1} = S_{a_{a}ac_{a}} (2/3) \text{ or } S_{a_{a}ac_{a}}$	138.0 km^2	153.1 km^2	
リ 1	mine Sal (Min) 亚均すべり量 D. (m)	$D_{a_1} = -(\alpha_1 / \sum \alpha_2^3) D_{a_1} = 0$	2.5 m	5.0 m	
テア	「小····································	$D_{a1} = (\gamma_1 / 2 \gamma_i) D_{a_{seg}}$	5.5 III	3.0 III	
イス	$\pm \pm $	$O_{al} - O_{a,seg}$	13.6 MPa	13.6 MPa	
hohr	計异/fl 田 積 (km ⁻)	2km パンジンユリイヘ	140 km²	160 km ²	
	面積 S _{a2} (km ²)	$S_{a2}=S_{a_seg}(1/3)$ or 0		76.6 km ²	
テア	半均すべり量 D _{a2} (m)	$D_{a2}=(\gamma_2 / \Sigma \gamma_i^{3}) \cdot D_{a \text{ seg}}$		3.5 m	
イス	実行応力 σ _{a_seg} (MPa)	$\sigma_{a2}=\sigma_{a_seg}$		13.6 MPa	
\sim	計算用面積 (km ²)	2kmメッシュサイズ		80 km ²	
	面積 Sb (km ²)	$S_b = S_{seg} \cdot S_{a_seg}$	241.5 km ²	401.8 km ²	
背	平均すべり量 D _b (m)	$D_b = \overline{M_{0b}/(\mu \cdot S_b)}$	0.7 m	1.0 m	
京領	実行応力 σ _b (MPa)	$\sigma_b = (D_b/W_{b_seg}) \cdot (\pi^{1/2}/\overline{D_{a_seg}}) \cdot r \cdot \Sigma \gamma_i^3 \cdot \sigma_{a_seg}$	1.8 MPa	1.3 MPa	
_限 域	地震モーメントM _{0b} (Nm)	$M_{0b}=M_{0seg}-M_{0a_{seg}}$	5.64E+18 Nm	1.21E+19 Nm	
	計算用面積 (km ²)	2kmメッシュサイズ	240 km ²		
fmax			6 Hz		
平均破壊伝播速度 Vr (km/s)		Vr=0.72·β	2.4	km/s	

表 I.2.3-5 断層モデルパラメータ

(F1断層、北方陸域の断層、塩ノ平地震断層の連動:円形破壊面を仮定しないケース)

F1断層~塩ノ平断層の連動		原電資料	設定値		
活断層長さL (km)		活断層調査結果による位置を基に設定	57.7 km		
断層モ	·デル上端深さ H _s (km)	微小地震の発生及び地下構造から設定	3.0 km		
地震発	^を 生層下端深さ H _d (km)	微小地震の発生及び地下構造から設定	18.0 km		
断層傾	〔斜角δ(°)	活断層調査結果に基づき設定	60 °		
巨視的震源パラメータ		設定方法	北部	南部	
断層モ	デル原点	地中の上端における屈曲点	北緯 36.東経 140	878675 ° 721689 °	
走向θ	(°)	原電資料より	158 °E	181 °E	
傾斜角	ίδ (°)	原電資料より	60 °	60 °	
すべり	角 γ (°)	東側隆起の正断層(原電資料より)	-90 °	-90 °	
地震発生層の密度 ρ (g/cm ³)		地震本部による「全国1次地下構造モデル (暫定版)」を参考に設定	2.7 km		
地震発生層のS波速度β(km/s)		地震本部による「全国1次地下構造モデル (暫定版)」を参考に設定	3.4 km		
地震発	š生層の剛性率 μ (N/m ²)	$\mu = \rho \cdot \beta^2$	3.1E+10	N/m ²	
断層モ	デル上端深さ(km)	原電資料より	3 km	3 km	
単位区	間長さLseg (km)	原電資料より	22 km	36 km	
単位区	5間幅 W _{seg} (km)	レシピに従い設定	18 km	18 km	
単位区	[間面積 Sseg (km ²)	$S_{seg}=L_{seg}\times W_{seg}$	396 km ²	648 km ²	
重複防	≿去の単位区間面積 Sseg (km²)		379.5 km ²	631.5 km ²	
断層モ	デルの総面積 Smodel (km ²)	$Smodel = \Sigma S_{seg}$	1011	km ²	
マグニ	チュードM	M=(logL+2.9)/0.6	7	.8	
地震モ	ーメントM ₀ (Nm)	logM ₀ =1.17M+10.72	6.51	E+19	
モーメ	ントマグニチュードMw	M _w =(logM ₀ -9.1)/1.5	7	.1	
静的応	示力降下量 Δσ (MPa)	Fujii amd Matsu'ura (2000)による	3.1 MPa		
平均す	-べり量 D _{model} (m)	$D_{model}=M_0/(\mu \cdot S_{model})$	2.1 m		
短周期レベルA (Nm/s ²)		$A=2.46\cdot 10^{10} \cdot (M_0 \cdot 10^7)^{1/3}$	2.13E+19 Nm/s ²		
微視的	り震源パラメータ				
全アスペリティ面積 S _a (km ²)		Sa=0.22S	222.4 km ²		
全アスペリティの実行応力 ga (MPa)		$\sigma_a = \Delta \sigma_a = (S/S_a) \times \Delta \sigma$	14.1	Мра	
単位▷	【間ごとの微視的震源パラメータ				
単位区	S間地震モーメントM _{0seg} (Nm)	単位区間面積の1.5乗に比例して分配	2.07E+19 Nm	4.44E+19 Nm	
単位区	四日本 (m)	$D_{seg}=M_{0seg}/(\mu \cdot S_{seg})$	1.7 m	2.3 m	
全	面積 Sa seg (km ²)	単位区間面積に比例して分配	83.5 km ²	138.9 km ²	
テア	平均すべり量 Da seg (m)	$D_{a seg} = \xi \cdot D_{seg}$, $\xi = 2.0$	3.5 m	4.5 m	
1	実行応力 σ _{a seg} (MPa)	$\sigma_{a} = \sigma_{a}$	14.1 MPa	14.1 MPa	
IJ	地震モーメントM _{Oa seg} (Nm)	$M_{0a \text{ seg}} = \mu \cdot D_{a \text{ seg}} \cdot S_{a \text{ seg}}$	9.11E+18 Nm	1.95E+19 Nm	
第	面積 S-1 (km ²)	$S_{a1}=S_{a} \sin^{2}(2/3) \text{ or } S_{a} \sin^{2}($	83.5 km ²	92.6 km^2	
リ 1	平均すべり量 Dat (m)	$D_{x} = (\alpha_{x} / \sum \alpha_{y}^{3}) \cdot D$	2.5 m	5.0 m	
テア	年代の 実行応力 σ (MPa)	$D_{al} = (\gamma_l / 2 \gamma_i) D_{a_seg}$	3.3 III	3.0 III	
イス	$\neq \square = \square = \square = \square = \square = \square$	Olime Luni (, th L T	14.1 MPa	14.1 MPa	
htte	計昇用面積 (km)		80 km	100 km	
	面積 S _{a2} (km ²)	$S_{a2} = S_{a_seg} \cdot (1/3) \text{ or } 0$		46.3 km ²	
テア	平均すべり重 D _{a2} (m)	$D_{a2} = (\gamma_2 / \Sigma \gamma_i) D_{a_{seg}}$		3.5 m	
イス	美行応刀 σ _{a_seg} (MPa)	$\sigma_{a2} = \sigma_{a_seg}$		14.1 MPa	
\sim	計算用面積 (km ²)	2kmメッシュサイズ		48 km ²	
-114	面積 Sb (km ²)	$S_b = S_{seg} - S_{a_seg}$	296.0 km ²	492.6 km ²	
背星	平均すべり量 D _b (m)	$D_b=M_{0b}/(\mu S_b)$	1.3 m	1.6 m	
「泉	実行応力 σ _b (MPa)	$\sigma_{b} = (D_{b}/W_{b_seg}) \cdot (\pi^{1/2}/D_{a_seg}) \cdot r \cdot \Sigma \gamma_{i}^{-3} \cdot \sigma_{a_seg}$	2.4 MPa	1.7 MPa	
域	地震モーメントM _{0b} (Nm)	M _{0b} =M _{0seg} -M _{0a_seg}	1.16E+19 Nm	2.49E+19 Nm	
	計算用面積 (km ²)	2kmメッシュサイズ	300 km^2	484 km ²	
fmax			6 Hz		
平均破壊伝播速度 Vr (km/s)		Vr=0.72·β	2.4	km/s	

F1断層、北方陸域の断層、塩ノ平地震断層の連動(円形破壊面を仮定するケース) (□:強震動生成域、★:破壊開始点)

F1断層、北方陸域の断層、塩ノ平地震断層の連動(円形破壊面を仮定しないケース) (□:強震動生成域、★:破壊開始点)

(4) 棚倉破砕帯東縁断層、同西縁断層の連動

棚倉破砕帯西縁断層は、地震調査研究推進本部の関東地域の活断層の長期評価において、活 断層の可能性の低い構造として長期評価対象外とされたが、原子力規制委員会の新規制基準適 合性に係る審査会合においては、棚倉破砕帯東縁断層との連動(M7.5、断層長さ42km)を検討 している(図I.2.3-6)。この棚倉破砕帯東縁断層、同西縁断層の連動の地震が発生した場合、 県北部の西部地域で被害が発生することが懸念される。

このようなことから、棚倉破砕帯東縁断層、同西縁断層の連動の地震を想定地震として検討 することにした。なお、中田・今泉(2002)においては、東側隆起の逆断層としているが、ここ では、F1断層、北方陸域の断層の連動と震源位置の重複を避けるため、西側隆起の逆断層のモ デルを作成し、検討した。

審査会合資料を参考に、強震動予測レシピに従って、断層モデルを作成した。作成した断層 モデルを図I.2.3-12に、設定した断層パラメータを表I.2.3-6に示す。

詳細法により求めた工学的基盤と地表の震度分布を図 I.2.3-13 に示す。

図 I.2.3-12 棚倉破砕帯東縁断層、同西縁断層の連動の断層モデル(□:強震動生成域、★:破壊開始点)

表 I.2.3-6 断層モデルパラメータ

(棚倉破砕帯東縁断層、同西縁断層の連動)

棚倉破砕帯東縁断層、同西縁断層の連動	原電資料	設定値
活断層長さL(km)	活断層調査結果による位置を基に設定	42
断層モデル上端深さ H _s (km)	微小地震の発生及び地下構造から設定	3.0
地震発生層下端深さ H _d (km)	微小地震の発生及び地下構造から設定	18.0
断層傾斜角δ(°)	活断層調査結果に基づき設定	60
巨視的震源パラメータ	設定方法	
活断層長さL(km)	活断層調査結果による位置を基に設定	42
マグニチュードM	M=(logL+2.9)/0.6	7.5
地震モーメントM ₀ (Nm)	$logM_0=1.17M+10.72$	3.47E+19
モーメントマグニチュードMw	$M_w = (log M_0 - 9.1)/1.5$	7.0
断層モデルの面積 Smodel (km ²)	$S_{seg} = L_{seg} \times W_{seg}$	792
静的応力降下量 Δσ (MPa)	$\Delta \sigma = 7/16 \cdot M_0/R^3$	3.8
平均すべり量 D _{model} (m)	$D_{model} = M_0 / (\mu \cdot S_{model})$	1.4
断層モデル原点 (地中) (°N)	地中の上端	36.963737
断層モデル原点 (地中) (°E)	地中の上端	140.415443
走向θ(°)	原電資料より	171
傾斜角δ (°)	原電資料より	60
すべり角 γ (°)	西側隆起の逆断層	90
地震発生層の密度 $o(g/cm^3)$	地震本部による 全国1次地下構造モデル	2.5
	(暫定版)」を参考に設定	2.7
地震発生層のS波速度 β (km/s)	地長平部による「王国」(が地下博垣で)ル (動完版)」を参考に設定	3.4
地電発生層の剛性 恋 (N/m^2)	(首定)版)」を参与に成定	2.1E+10
地展光工作の前に半 μ (N/III) 断届モデルト提響さ H (Ivm)	μ-pp 「「すなぉ」とり	3.1E+10
阿福モアル工端はたら H_s (KIII) 版展エデル派な下限 H_s (km)	原電気率1.10	J 19
阿僧 $C / \mathcal{V}(KC) \chi \Pi_d(KII)$ 艇 国 エデル 毛 ヤ $I = (Irm)$	小电具付より	18
例信てアル投合L _{model} (KIII) 転展エデル幅 W (Jrme)	レンレに従い設定	44
	レンビに従い設定	18
	$1 - 2 + (-10^{10} - 1 - 10^{7})^{1/3}$	
短周期レベルA (Nm/s)	$A=2.46\cdot10^{-1}(M_0\cdot10^{-1})^{-1}$	1.73E+19
全 面積 S _a (km ²)	$S_a = \pi r^2$, r=(7 $\pi/4$) • {M ₀ /(A • R)} β^2	202.8
テノ ス 実行応力 $\sigma_{a_{seg}}$ (MPa)	$\sigma_a = \sigma_a = 7/16 M0/(r^2R)$	14.8
イペ 平均すべり量 D _a (m)	$D_a = \xi \cdot D, \xi = 2.0$	2.8
リ 地震モーメントM _{0a} (Nm)	$M_{0a} = \mu \cdot D_a \cdot S_a$	1.78E+19
ア 面積 S _{a1} (km ²)	$S_{al}=S_a$ (2/3) or S_a	135.2
ス 平均すべり量 D _{al} (m)	$D_{al} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_a$	3.1
1_{11} 実行応力 $\sigma_{a1 seg}$ (MPa)	$\sigma_{al} = \sigma_{a seg}$	14.8
テ 地震モーメントM _{0a1} (Nm)	$M_{0al} = \mathbf{u} \cdot \mathbf{D}_{al} \cdot \mathbf{S}_{al}$	1.31E+19
イ 計算用面積 (km ²)	2kmメッシュサイズ	140
了 西待 S_{1} (m ²)	$S_{2} = S_{2} \cdot (1/3)$ or 0	67.6
7 回復 S_{al} (KIII) ス 亚均 オ ご り 号 D_{al} (m)	$S_{a2} - S_a(1/3) = 0$	07.0
2°	$D_{a1} = (\gamma_1 / 2 \gamma_i) D_a$	2.2
² リ 美行応力 Gal_seg (MPa)	$\sigma_{a1} = \sigma_{a_seg}$	14.8
テ 地震モーメントM _{0a1} (Nm)	$M_{0a1} = \mu \cdot D_{a1} \cdot S_{a1}$	4.64E+18
1 計算用面積 (km ²)	2kmメッシュサイズ	64
背 面積 Sb (km ²)	Sb=Sseg-Sa_seg	589.2
景 平均すべり量 D _b (m)	$D_b=M_{0b}/(\mu:S_b)$	0.9
領 実行応力 σ _b (MPa)	$\sigma_b = (D_b/W_{b_seg}) \cdot (\pi^{1/2}/D_a) \cdot T \cdot \Sigma \gamma_i^3 \cdot \sigma_a$	2.1
域 地震モーメントM _{0b} (Nm)	$M_{0b}=M_{0seg}-M_{0a_seg}$	1.69E+19
fmax		6
平均破壊伝播速度 Vr (km/s)	Vr=0.72·B	24

(a) 工学的基盤震度

(b) 地表震度

(5) 太平洋プレート内の地震

1993年1月15日に発生した釧路沖地震は、釧路沖の深さ101kmを震源とするマグニチュード 7.5の地震で、釧路で震度6を観測した。この地震は、太平洋プレート内部で発生した地震と いわれている。図I.2.3-14に関東地域の震央分布図を示し、図I.2.3-15に太平洋プレート 上面深さ分布を示す。茨城県沿岸では太平洋プレート上面の深さが50km~60km程度と釧路沖地 震の震源の深さの約半分となっていることから、釧路沖地震のような地震が発生した場合、茨 城県内に甚大な被害をもたらす可能性がある。

そこで、茨城県沿岸付近に太平洋プレート内に発生するプレート内地震を想定した。茨城県 北部沿岸の太平洋プレートの潜り込み深さを勘案して県北部の震源モデルを設定した。さらに、 県北部の震源モデルを南部に延長し、霞ヶ浦付近に太平洋プレート内に震源が位置するように 県南部の震源モデルを設定した。

断層パラメータは下記の通り設定した。

- 断層パラメータは、レシピに準拠する。
- 県北部のケース:断層位置は、県北部の海岸沿いに設定し、不確実性を考え、図
 I.2.3-16の左図のように3つの位置を想定する。
- 県南部のケース:県北部で設定した際のプレート上面深度に沿って南方へ移動し、県南部の の 霞ヶ浦付近に断層位置を設定し、不確実性を考え、図Ⅰ.2.3-16の右図のように3つの 位置を想定する。
- 図Ⅰ.2.3-17のように、深さはプレート上面(図Ⅰ.2.3-14、図Ⅰ.2.3-15参照)より 20 km 下方に設定し、傾斜は鉛直および水平を想定する。

設定した太平洋プレート内の地震の断層パラメータを表 I.2.3-7に、作成した断層モデルの 地表投影図を図 I.2.3-18、図 I.2.3-19 にそれぞれ示す。

詳細法により求めた工学的基盤と地表の震度分布をケースごとに図I.2.3-20、図I.2.3-21に示す。

図8-1 関東地域の地震活動の震央分布図及び領域 a、領域 b内の断面図(1997年10月1日-2013年12月31日、M≧2.0、気象庁作成) (左)震央分布図(深さ0-30km)0-20kmの地震を緑色、20km以深の地震を青色で表示。赤三角は活火山。 (右)領域 a、領域 b内の断面図(深さ0-200km、東西投影)

関東地域の活断層の長期評価(第一版)より

図 I.2.3-15 太平洋プレート上面の等深図 内閣府(2013)

図 I.2.3-16 太平洋プレート内地震の断層位置の考え方(左)県北部、(右)県南部

図 I.2.3-17 太平洋プレート内地震の傾斜と深さの考え方

		設定方法				
巨視的震源パラメータ						
モーメン	、トマグニチュード <i>M</i> w		7.5			
地震モー	·メント M_0	$M_{\rm w} = (\log M_0 - 9.1)/1.5$	2.24E+20 Nm			
断層モデ	ル原点	プレート形状から設定				
走向 θ		プレート形状から設定	201 °			
傾斜角 δ			90 or 0 °			
すべり角	λ		90 °			
S波速度	β	佐藤・巽(2002)	4.0 km/s			
密度 ρ		佐藤・巽(2002)	3.00E+03 kg/m ³			
剛性率μ			4.80E+10 N/m ²			
断層モデ	ル面積 S	$S = 7\pi^2 \beta^2 M_0 / (4A\gamma_{\rm SMGA}^{0.5})$	1079.8 km ²			
断層モデ	ル上端深さ	プレート形状から設定	60 or 76 km			
断層モデ	ル長さ L_{model}		32 km			
断層モデ	ル幅 W _{model}		32 km			
断層モデ	ル面積 S _{model}	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	1024 km^2			
静的応力	降下量 $ extsf{/}\sigma$	$\Delta \sigma = 7/16 \cdot M_0/(S/\pi)^{1.5}$	15.4 MPa			
平均すべ	、り 量 <i>D</i>	$D = M_0/(\mu \cdot S)$	4.3 m			
微視的震	源パラメータ	-				
短周期レ	イベッレ A	$A = 2.46 \cdot 10^{17} \times M_0^{1/3}$	1.29E+20 Nm/s ²			
全アスペ	リティ面積 S _a	$S_{a}=1.25\times10^{-16}\times(M_{0}\times10^{7})^{2/3}$	213.9 km ²			
SMGA面积	積比 γ _{SMGA}	$\gamma_{\rm SMGA} = 16A^2 S_a^2 / (49\pi^4 \beta^4 M_0^2)$	19.8 %			
全アスペリ	リティ実効応力 σ_a	$\sigma_{a} = (S/S_{a}) \cdot \bigtriangleup \sigma$	77.6 MPa			
	平均すべり量 Da	$D_{a}=\xi \cdot D$, $\xi=2.0$	8.6 m			
全SMGA	地震モーメント M _{0a}	$M_{0a} = \mu \cdot D_a \cdot S_a$	8.87E+19 Nm			
	計算用面積	2 kmメッシュサイズ	224 km^2			
	面積 S _b	$S_{b}=S-S_{a}$	865.9 km ²			
背	平均 すべり 量 D_b	$D_{b}=M_{0b}/(\mu \cdot S_{b})$	3.3 m			
京佰	実効応力 σ_b	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) \cdot (\pi^{1/2}/D_{\rm a}) \cdot r \cdot \Sigma \gamma_{\rm i}^{3} \cdot \sigma_{\rm a}$	10.3 MPa			
域	地震モーメント M _b	$M_{0b} = M_{0} - M_{0a}$	1.35E+20 Nm			
	計算用面積	2 kmメッシュサイズ	800 km ²			

表 I.2.3-7 スラブ内地震の断層パラメータ

地表震度

地表震度

地表震度

地表震度

太平洋プレート内の地震では、県北部で鉛直の北部、中部、南部、水平の北部、中部、南部 の6パターン、県南部でも同様に6パターンの震源を想定した。被害想定に用いる地震につい ては、曝露人口を求めて県北部と県南部で一つずつに絞ることとした。図I.2.3-22 ~図 I.2.3-33 に曝露人口分布を示し、表I.2.3-8に震度ごとの曝露人口を示す。

鉛直モデルと水平モデルを比較すると、鉛直モデルの方が曝露人口が多くなっている。

県北部では、南部の鉛直で震度6強以上の曝露人口が北部、鉛直より若干少ないが、震度6 弱以上の曝露人口が3倍多くなっている。県南部では、南部、鉛直で震度6強以上が最も多く なっている。

以上より、県北部と県南部で以下のパターンを選んだ。

·県北部:鉛直、南部

·県南部:鉛直、南部

地震名					曝露人口			曝露人口割合(人口に対する)			
			茨城県 人口	震度6弱	震度6強	震度7	震度6弱 以上	震度6強 以上	震度7		
					以上	以上		(%)	(%)	(%)	
太		県北部	北部	鉛直	2,975,457	149,360	1,329	0	5.02	0.04	0.00
	<u>ل</u> ا	県北部	中部	鉛直	2,975,457	442,489	421	0	14.87	0.01	0.00
2	F	県北部	南部	鉛直	2,975,457	516,177	1,294	0	17.35	0.04	0.00
洋プレート内の地震	ŧ	県南部	北部	鉛直	2,975,457	685,022	911	0	23.02	0.03	0.00
	2	県南部	中部	鉛直	2,975,457	572,188	917	0	19.23	0.03	0.00
	í L	県南部	南部	鉛直	2,975,457	411,075	3,341	0	13.82	0.11	0.00
		県北部	北部	水平	2,975,457	83,283	970	0	2.80	0.03	0.00
	۶ L	県北部	中部	水平	2,975,457	184,395	0	0	6.20	0.00	0.00
	מ	県北部	南部	水平	2,975,457	381,391	0	0	12.82	0.00	0.00
	也	県南部	北部	水平	2,975,457	329,106	534	0	11.06	0.02	0.00
	Ē	県南部	中部	水平	2,975,457	334,965	232	0	11.26	0.01	0.00
		県南部	南部	水平	2,975,457	237,384	989	0	7.98	0.03	0.00

表 I.2.3-8 太平洋プレート内の地震の曝露人口

震度6弱以上

震度 7

震度 7

図 I.2.3-23 曝露人口(太平洋プレート内の地震:県北部(中部)鉛直)

震度6強以上

図 I.2.3-24 曝露人口(太平洋プレート内の地震:県北部(南部)鉛直)

I 地盤モデル・想定地震について2.想定地震の選定

図 I.2.3-25 曝露人口(太平洋プレート内の地震:県南部(北部)鉛直)

震度6強以上

震度 7

図 I.2.3-26 曝露人口(太平洋プレート内の地震:県南部(中部)鉛直)

震度6弱以上

曝露人口 宽度6码以上 100.000 - 300.000 10.000 - 100.000 5.000 - 100.000 2.000 - 5.000 1.000 - 2.000 5.00 - 1.000 100 - 500 100 - 100 6 - 10

震度6弱以上

震度6強以上

図 I.2.3-27 曝露人口(太平洋プレート内の地震:県南部(南部)鉛直)

震度6弱以上

図 I.2.3-29 曝露人口(太平洋プレート内の地震:県北部(中部)水平)

図 I.2.3-30 曝露人口(太平洋プレート内の地震:県北部(南部)水平)

震度6弱以上

震度 7

震度 7

図I.2.3-32 曝露人口(太平洋プレート内の地震:県南部(中部)水平)

曝露人口 震度6得以上 100,000 - 300,000 50,000 - 160,000 160,000 - 50,000 2,000 - 50,00 1,000 - 50,00 1,000 - 1000 100 - 100 100 - 100 0 - 10

図Ⅰ.2.3-33 曝露人口(太平洋プレート内の地震:県南部(南部)水平)

(6) 茨城県沖から房総半島沖にかけての地震(茨城県(2012))

地震調査研究推進本部の「三陸沖から房総沖にかけての地震活動の長期評価(第二版)について(平成23年11月25日付け)」によれば、三陸沖北部から房総沖の海溝寄りのプレート間地震(津波地震)は、M8以上の地震が約400年に4回発生しているとすると103年に1回程度同じ場所で繰り返し地震が発生したとされる。

また、当該領域の歪は、東北地方太平洋沖地震により、三陸沖中部から三陸沖南部海溝寄り の歪は解放され、福島県沖~茨城県沖の領域は、数mのすべりがあったと推定されるが、これ までの歪が全て解放されたかどうかは不明である。

一方、房総沖は、1677年の延宝房総沖地震以降 300 年以上の空白期間がある。今後の起こり うる地震は、過去に発生した地震を参考にして、具体的な地域は特定できないが、日本海溝に 沿って断層長 200km 程度の長さの波源域で発生する、Mt(津波マグニチュード) 8.6 ~ 9.0 の 津波地震であることが想定されている。

以上より、茨城県沿岸に津波被害を想定する地震として、茨城県津波浸水想定調査で設定されたH23想定津波を発生させる地震を設定する。

図 I.2.3-34 茨城県沖から房総半島沖にかけての津波を発生させる地震

茨城県(2012)